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Cancer Modeling is a Huge
Field

2006 Falconer Lecture
Trachette Jackson:
“Cancer Modeling: From the Classical to the Contemporary”
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Doctors DO read

- in their spare time!

M.O.M.
Charles Wiseman, M.D.
Los Angeles Institute of
Oncology
St. Vincent’s Hospital



Cancer:
Mathematical
Challenges

Ami
Radunskaya

Population
Models

Chemotherapy
and
Optimization

Spatial
Models

Vaccines

A tale of cooperation

Lisette dePillis

And so many more!

Dann Mallet Kathe Todd-Brown
Seema Nanda Allison Wise
Weiquing Gu Hana Ueda
Shari Pilon-Thomas Megan Hunter
Sarah Hook Chris DuBois
Kasia Resniak Sam Antill
Angela Gallegos Rob Donnelly
Minaya Villasana Liz Howe

Chris DeBoever
Helen Wu
Katherine Belsky
Ryan Handoko
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What they learned in Medical
School

After k doublings: 2k cells.
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Implications of exponential
growth:

• If we start with one cell:

• then it takes 44 days to detect a 7mm tumor
• and after 98 days the tumor will be the size of a beach

ball
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Exponential growth is not
consistent with clinical

observations
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Predator-Prey Models
Example: The Canada Lynx and the Snow Hare

Equations:

dS
dt

= rS(1−S)−c1SC

dC
dt

= −dC +c2SC
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Predator-Prey Models
The predators in the immune system are the cytotoxic
T-cells 1

and the Natural Killer
cells 2.

1http://www.alkalizeforhealth.net
2Prof. Dr. Rupert Handgretinger
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A model of tumor-immune
interactions

T : Tumor Cells

N: Natural Killer Cells (innate response)
L: Cytotoxic T Lymphocytes (adaptive response)

dT
dt

= gT (T )−cN(T ,N)−cL(T ,L)

dN
dt

= gN(N)−cTN(T ,N)

dL
dt

= gL(T ,L)−cTL(T ,L)

The simplest interaction terms are of the form:
Power Kill Term

cN(T ,N) = kNT or kNpT .

A power kill term could not be reconciled with data involving
CTL’s.
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Comparison with data: patients
3
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Model Prediction of Percent Lysis Compared to Patient Data: 
Power Form

Patient 9 Predicted Specific Lysis
Patient 9 Measured Specific Lysis
Patient 10 Predicted Specific Lysis
Patient 10 Measured Specific Lysis

10−1 100 101 102
0

10

20

30

40

50

60

Effector:Target Ratio
P

er
ce

n
t 

S
p

ec
if

ic
 L

ys
is

Model Prediction of Percent Lysis Compared to Patient Data: 
Rational Form

Patient 9 Predicted Specific Lysis
Patient 9 Measured Specific Lysis
Patient 10 Predicted Specific Lysis
Patient 10 Measured Specific Lysis

← CL(T ,L) = kTLp

3Dudley et al. Science (2002); Graphs from dePillis, Radunskaya and Wiseman Cancer Research (2005)
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3Dudley et al. Science (2002); Graphs from dePillis, Radunskaya and Wiseman Cancer Research (2005)
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→

Conclusion: The kill rates by activated, antigen specific
cytotoxic immune cells obey a ratio-dependent law.

3Dudley et al. Science (2002); Graphs from dePillis, Radunskaya and Wiseman Cancer Research (2005)
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Patient 9 Predicted Specific Lysis
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Patient 10 Measured Specific Lysis

CL(T ,L) =
k(L/T )p

s+(L/T )p.

Dr. Wiseman calls this the dePillis-Radunskaya Law

3Dudley et al. Science (2002); Graphs from dePillis, Radunskaya and Wiseman Cancer Research (2005)
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Population model with the dePillis-Radunskaya Law
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NOTE: The functional forms of the lysis terms distinguish NK -cells from CD8+ (tumor-specific) cells.
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Mystery Remains !!

The mechanisms behind the dePillis-Radunskaya Law is
still not understood.
Intuitively: Immune cell population density should influence
average immune cell kill rate.
Empirical Evidence: Most natural systems are closer to ratio
dependence than to “prey” dependence. From the
ecological literature.
This summer we tested several mechanisms using spatial
models (stay tuned!).
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A model with chemotherapy 4

u

T EH

Tumor :
dT
dt

= r1T (1−b1T )−c1TE −c2TH−a1(1−e−u)T

Effector (immune) :
dE
dt

= s+ r2E
T

k +T
−d1E −c3ET −a2(1−e−u)E

Host (normal) :
dH
dt

= r3H(1−b2H)−c4TH−a3(1−e−u)H

Drug :
du
dt

= v(t)−d2u

4dePillis and Radunskaya A Mathematical Tumor Model with Immune Resistance and Drug Therapy: an
Optimal Control Approach, Journal of Theoretical Medicine, 2001
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Optimize Treatments

• Find the control variable v(t) that minimizes the
objective functional

J(v) = K1T (tf )+K2

∫ tf

t0
T (t)dt

• subject to the differential equations with Initial
Conditions

• and the inequality constraints

H(t)≥ .75×Hnormal∫ tf

t0
v(t)dt ≤ uTotal

This problem admits bang-bang solutions (on or off)
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Tumor Growth - Traditional Pulsed Chemotherapy

I(0) = 0.15 I(0) = 0.1 

Red denotes tumor, Magenta denotes “shots” of drug.
Blue denotes immune cells, Green denotes normal cells.
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Tumor Growth - Optimal Chemotherapy

I(0) = 0.15 I(0) = 0.1 
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Morphology and Metastasis

Image Courtesy http://www.ssainc.net/images/melanoma_pics.GIF 

http://www.lbah.com/Rats/rat_mammary_tumor.htm http://www.loni.ucla.edu/~thompson/HBM2000/sean_SNO2000abs.html 
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Cellular Automaton (CA)

Add spatial variability ⇒ need populations at each point in
space as well as time.

A CELLULAR AUTOMATA (CA) is a grid ( in 1-d, 2-d, or 3-d),
with state variables specified in each grid element, and rules
for the evolution of those variables from one time-step to the
next.
EXAMPLE: The grid is a discretization of a slice of tissue,
the state is the cell population:
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To add spatial variability, need populations at each point in space as well as 

time.   

A CELLULAR AUTOMATA (CA) is a grid ( in 1-d, 2-d, or 2-d), with variables in 

each grid element, and rules for the evolution of those variables from one time-
step to the next. 

EXAMPLE: The grid is a discretization of a slice of tissue: 
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Cellular Automaton Model 5

• Includes Tumor cells (living and necrotic), Immune cells
(NK and CTL), and normal Host cells.

• Two types of nutrients: one for maintenance, M, e.g.
oxygen and one necessary for cell division N, e.g.
glucose.

5dePillis, Mallett and Radunskaya (2006)
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A change in the relative consumption rates of the two
nutrients causes a change in the morphology

λm = 1.5, λn = 1.5 λm = 1.5, λn = 45
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High innate immune level: I0 = .003

Low innate immune level: I0 = .0005
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High CTL induction rate

Low CTL induction rate
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Use spatial model to test
mechanisms behind the

dePillis-Radunskaya Law.
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First FDA Approval of Therapeutic Cancer Vaccine A Milestone Victory for Field of Cancer Immunotherapy 

Released: 4/30/2010 7:00 PM EDT

Source: Cancer Research Institute

(April 30, 2010 – New York, NY) The Cancer Research Institute celebrates yesterday’s announcement of the first therapeutic cancer

vaccine to receive approval from the U.S. Food and Drug Administration. The vaccine, called Provenge, is produced by Seattle

biotech company Dendreon (NASDAQ:DNDN) and is designed to treat certain forms of advanced prostate cancer.

“The approval of a vaccine to treat cancer is a victory in the history of cancer therapy, and signals the beginning of a new era in

cancer medicine,” said Jill O’Donnell-Tormey, Ph.D., executive director of the U.S.-based Cancer Research Institute (CRI), a

nonprofit organization founded in 1953 that has provided decades of significant support to cancer immunology researchers around

the world so that the development of cancer immunotherapies such as Dendreon’s Provenge might one day be possible.

“Our organization was the first to explore the immune system and its relationship to cancer,” O’Donnell-Tormey said. CRI founder

Helen Coley Nauts established the Institute in 1953 after she became convinced of the promising medical discoveries of her father,

a surgeon practicing medicine in New York from the late 1800s to early 1900s named William B. Coley, M.D., who had found a way

to stimulate anti-tumor immune responses in inoperable cancer patients. “Since then, we have invested all our resources—more

than $200 million dollars—in providing scientists with the means to unlock the power of our immune system to fight cancer.”

Similar to many other promising cancer immunotherapies currently under development around the globe, Provenge attempts to

harness the body’s natural ability to fight cancer by mobilizing the immune system to find and eliminate cancer cells. Because most

of these treatments target specific molecular markers that can distinguish cancer cells, they have the potential to eliminate tumors

without causing many of the negative side effects associated with chemotherapy, radiation therapy, and surgery.

The final approval of Dendreon’s vaccine was based on a large, phase III clinical trial where Provenge showed a statistically

significant improvement in overall survival of men with metastatic hormone-resistant prostate cancer. Dendreon’s study of 512 men

demonstrated that when compared to a placebo, Provenge increased three-year survival by 38 percent and extended median

overall survival by 4.1 months.

As a first generation therapeutic cancer vaccine, Provenge demonstrates important proof-of-principle for this emerging class of

active cancer immunotherapies. However, most experts in the field would agree that scientists are just beginning to scratch the

surface of these vaccines’ full therapeutic potential.

CRI Scientific Advisory Council director Lloyd J. Old, M.D., a pioneer responsible for many seminal discoveries in the field, is a

senior expert in tumor immunology who for the past four decades has guided the scientific vision for CRI and who currently leads

the Institute’s global cancer vaccine research programs.

“The FDA approval of Provenge is a landmark for the field of cancer immunology and immunotherapy, adding strength to the

concept of immunological control of cancer and demonstrating the commercial viability of the approach,” Old stated. “The challenge

now is to maximize the effectiveness of cancer vaccines such as Provenge by incorporating all we have learned in recent years

about the immune response to cancer and cancer vaccine development, converting the four-month survival advantage of Provenge-

vaccinated patients into prolonged—even lifelong—control of the disease.”

Old, who also heads the Ludwig Institute for Cancer Research (LICR) New York Branch and has served for many years as director

of LICR’s worldwide scientific programs, says that, eventually, vaccines will treat a wide variety of cancer types, recruiting the

immune system to stop the progression of patients’ tumors and helping to fully stabilizing the disease.

“Based on the clinical evidence we’ve gathered over the past decade in our cancer vaccine trials,” Old said, “and in light of data

from a variety of trials by others within the field, we believe therapeutic cancer vaccines will increasingly emerge as one of the

safest and most powerful ways to combat a variety of cancers.”

In an effort to accelerate the development, refinement, and approval of more cancer immunotherapies, the Cancer Research

Institute has a developed a comprehensive strategy that draws upon several complementary resources and programs.

First, in 2001, CRI formed a partnership with the Ludwig Institute for Cancer Research to develop the Cancer Vaccine Collaborative
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Cancer Immunotherapy: clinical
response to anti-CD3 T-cell

vaccine. 6

Anti-CD3 vaccine given on Day 0, retreat on Day 28

6patient of Dr. Charles Wiseman
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A collaborative effort

This project is in close collaboration with a laboratory
immunologist, Dr. Sarah Hook, University of Otago, NZ
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Measuring the immune
response

• Two immune cell populations are measured in the
laboratory that indicate antigen specific response:
CD4+ (helper T-cells) and CD8+ (killer T-cells).

• The vaccine is a peptide recognized by Dendritic Cells
(APC’s).

• Immune response is self-regulatory: phases triggered
by the presence of antigen (APC’s).

• Self-regulating mechanisms play critical role in
effectiveness of cancer vaccines, limited success to
date.
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Model Flow: Each T-cell Type
(CD4+ and CD8+)

5 sub-populations: Naive,Proliferating, Apoptotic, Basic,
Memory
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Antigen is presented in the spleen by other cells (e.g. DCs).



Cancer:
Mathematical
Challenges

Ami
Radunskaya

Population
Models

Chemotherapy
and
Optimization

Spatial
Models

Vaccines

Model DDE’s (for each T-cell
Type)

Ḋ = µDB(t)−dDD
· · ·

Ṅ = s−dNN−gNτN DτN

Ṗ = gNτN DτN +ρ
DτP

θ +DτP

PτP +λMτM DτM −dP(D)P

Ȧ =
1

TP
P−dAA

Ḃ = rB(D)P−dBB
Ṁ = rM(D)P−λMτM DτM
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Model DDE’s (for each T-cell
Type)

Ḋ = µDB(t)−dDD
· · ·

Ṅ = s−dNN−gNτN DτN

Ṗ = gNτN DτN +ρ
DτP

θ +DτP

PτP +λMτM DτM −dP(D)P

Ȧ =
1

TP
P−dAA

Ḃ = rB(D)P−dBB
Ṁ = rM(D)P−λMτM DτM

where τ subscripts denote delayed variables: Nτ = N(t− τ).

and functions of D reflect antigen clearance:
Dendritic Cells (D)

r M
(D

)

Decreasing Potential: Clearance of Antigen triggers effect

rmax
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First Kinetics Experiments

• Mice were injected with OVA 7 after being injected with
transgenic OVA-specific CD4 and CD8 cells.

• The numbers of cells were counted at various time
points post-vaccination.

7Ovalbumin protein
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Calibrate the model to data
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Note that the peak CD4+ levels are slightly lower and come
slightly later than the peak CD8+ levels.
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CD4 - Helper Cells CD8 - Killer
T-cells
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Optimization question: When to
give the vaccines?

• Cancer vaccines are weak antigens.
• Repeated doses are needed to initiate an effective

immune response.
• Immune cell production self-regulates: prolonged

contact with antigen isn’t always better.
• Find the optimal boosting schedule.
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Preliminary Boosting
Experiments Give Frustrating

Results

Boost Data
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CD8+ expansion is much lower than expected. Where is the
boosting effect?
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Boost given at peak of data
points:
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Best Dosage Strategy
The number of antigen presenting cells in the spleen, D(t),
is directly affected by an input function, u(t), that represents
a controlled dose of weak antigen (vaccine) entering the
blood stream.
Optimization goal: Find the control function, u(t) (vaccine)
that maximizes the immune response:
the number of effector T-cells in the Blood and/or the
number of Memory cells.
Admissible controls: 0≤ u ≤ umax . In practice: step
functions.
Maximize:

J(u) = k1vT x(Tf )+k2

∫ Tf

T0

wT x(t)dt

where x is the vector of state variables, k1,k2,v,w indicate
relative weights.
In terms of a control problem, this is simple. However, due to the delays in the equations, the situation

becomes complicated . . .
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Heuristic Optimization of Dose
Times

Search space: “populations” of dosage timings and dura-
tions.
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Heuristic Optimization of Dose
Times

Each “individual” is a sequence of “on”s and “off”s.
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Optimization techniques: evolutionary algorithms, simulated
annealing. 8

• Example here: Genetic Algorithm.

1,1,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,
⇒ 1,1,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,

Restrict to one Boost with constant duration (mimics
laboratory setup).

• Optimization choices: maximize peak response?
Number of memory cells?

8Villasana, 2004
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Genetic algorithms yield many
optimal candidates
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Select “Best of Bests”
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Compare GA result to
“Standard” Protocol
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Conclusions

• Mathematical models can suggest mechanisms
governing the interaction between cells.

• Optimization of model solutions can suggest better
timings of dosages.

• Spatial models can be used to study the effect of
treatments such as radiation, insulin potentiation
therapy and immunotherapies.

• A sensitivity analysis can suggest which parameters
are the best indicators of patient response.
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Continuing Work:

• Dosage timings suggested by optimization results
should be tested in the laboratory.

• A stability analysis suggests that adjuvants that
decrease delays might sustain the production of
effective T-cells. Confirm this theory with laboratory
tests.

• Test theories of immune cell kill mechanisms in the
laboratory.

• Add tumor compartment and immune cell trafficking:
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Continuing Work:
• Dosage timings suggested by optimization results

should be tested in the laboratory.
• A stability analysis suggests that adjuvants that

decrease delays might sustain the production of
effective T-cells. Confirm this theory with laboratory
tests.

• Test theories of immune cell kill mechanisms in the
laboratory.

• Add tumor compartment and immune cell trafficking:
Melanoma/DC Trafficking  

Model Compartments 

BLOOD 

TUMOR 

SPLEEN 

DCs 

DCs 

DCs 

CTL-active 

CTL-active 

CTL-active 

CTL-memory 

CTL-memory 

Tumor 

Model: 9 ODEs 
DC image courtesy http://anaximperator.files.wordpress.com/2010/02/dendritic-cell.png 

Melanoma image courtesy http://myhealth.ucsd.edu/library/healthguide/en-us/support/topic.asp?hwid=aa78799 



Cancer:
Mathematical
Challenges

Ami
Radunskaya

Population
Models

Chemotherapy
and
Optimization

Spatial
Models

Vaccines

to hear more . . .
Special session:

Mathematical Modeling of the Immune Response, Cancer
Growth and Treatments

1:00-5:00 p.m. Saturday

A star-studded line-up:
? Lisette dePillis - Modelling the Immune Response
? Doron Levy - Can Mathematics Cure Leukemia?
? Renee Fister - Optimal Control Scenarios in Cancer
Dynamics
? Peter Hinow - A Spatial Model of Tumor-Host Interaction:
Application of Chemotherapy
? Kasia Rejniak - Linking Changes in Epithelial
Morphogenesis to Cancer Mutations: An Integrative Model
? Jana Gevertz - Mathematical Simulations of Tumor
Response to Cancer Treatment
?Kara Pham - Predictions of tumor morphological stability
and evaluation against experimental observations
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? Kasia Rejniak - Linking Changes in Epithelial
Morphogenesis to Cancer Mutations: An Integrative Model
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Thanks to the organizers and . . .

thanks for listening!

aradunskaya@pomona.edu
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