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Cancer Modeling is a Huge
Field

2006 Falconer Lecture
Trachette Jackson:
“Cancer Modeling: From the Classical to the Contemporary”
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- in their spare time!

Doctors DO

M.O.M.

Charles Wiseman, M.D.
Los Angeles Institute of
Oncology

St. Vincent's Hospital

read
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And so many more!

A tale of cooperation

Lisette dePillis
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Weiquing Gu
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After k doublings: 2 cells.

School
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growth:
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Implications of exponential
growth:

* If we start with one cell:
* then it takes 44 days to detect a 7mm tumor

- and after 98 days the tumor will be the size of a beach
ball
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Example: The Canada Lynx and the Snow Hare

Equations:
as
dc
v dC+c,SC




Cancer:
Mathematical
Challenges

Ami
Radunskaya

Population
Models

Chemotherapy
and
Optimization

Spatial
Models

Vaccines

Predator-Prey Models

Example: The Canada Lynx and the Snow Hare

Equations:
as
dc
v dC+c,SC




Cancer:
Mathematical
Challenges

Ami
Radunskaya

Population
Models

Chemotherapy
and
Optimization

Spatial
Models

Vaccines

Predator-Prey Models

Example: The Canada Lynx and the Snow Hare

Equations:
as
dc
v dC+c,SC




Cancer:
Mathematical
Challenges

Ami
Radunskaya

Population
Models

Chemotherapy
and
Optimization

Spatial
Models

Vaccines

Predator-Prey Models

Example: The Canada Lynx and the Snow Hare

Equations:
as
dc
v dC+c,SC




Cancer:
Mathematical
Challenges

Ami
Radunskaya

Population
Models

Chemotherapy
and
Optimization

Spatial
Models

Vaccines

Predator-Prey Models

Example: The Canada Lynx and the Snow Hare

Equations:
as
dc
v dC+c,SC




Cancer:
Mathematical

Challenges PredatOF-Prey MOdeIS
Rameaia 1 0€ predators in the immune system are the cytotoxic
T-cells

Population
Models

Chemotherapy
and
Optimization

Spatial
Models

Vaccines

and the Natural Killer
cells 2.

1 http://www.alkalizeforhealth.net
2Prof. Dr. Rupert Handgretinger
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A model of tumor-immune

interactions

N: Natural Killer Cells (innate response)
L: Cytotoxic T Lymphocytes (adaptive response)

ar
ot

gT(T) — CN(T, N) — CL( T, L)
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T: Tumor Cells

A model of tumor-immune
interactions

N: Natural Killer Cells (innate response)
L: Cytotoxic T Lymphocytes (adaptive response)

ar
ot
aN
at

= gr(T)—cn(T,N)—c(T,L)

= gn(N)—cm(T,N)
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T: Tumor Cells

A model of tumor-immune

interactions

N: Natural Killer Cells (innate response)
L: Cytotoxic T Lymphocytes (adaptive response)

ar
ot
aN
ot
dL
ot

= gr(T)—cn(T,N)—c/(T,L)

= gn(N)—cm(T

,N)

= au(T,L)—cn(T,L)

The simplest interaction terms are of the form:

Power Kill Term

cn(T,N)=KNT or

KNPT.
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Optimization
. daT

S e 9r(T)—cn(T,N)—c.(T.L)
Vaccines dN

i gn(N) —cn(T, N)

aL

E = gL( Tv L) - CTL( Ta L)

The simplest interaction terms are of the form:
Power Kill Term

cn(T,N)=kNT or KNPT.

A power kill term could not be reconciled with data involving
CTLs.
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Comparison with data: patients
3

Model Prediction of Percent Lysis Compared to Patient Data: Model Prediction of Percent Lysis Compared to Patient Data:
Power Form Rational Form
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« C/(T,L) =KTLP

3Dudley et al. Science (2002); Graphs from dePillis, Radunskayaand Wiseman Cancer Research:(2005)
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Comparison with data: patients
3

Model Prediction of Percent Lysis Compared to Patient Data: Model Prediction of Percent Lysis Compared to Patient Data:
Power Form Rational Form
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k(L/T)P
T,.l)=——F-2—
ClT-D= .
Conclusion: The kill rates by activated, antigen specific
cytotoxic immune cells obey a ratio-dependent law.

3Dudley et al. Science (2002); Graphs from dePillis, Radunskayaand Wiseman Cancer Research:(2005)
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8

Percent Specific Lysis
8

Percent Specific Lysis

10 10 10 10 107 10° 10 10°

Effector:Target Ratio Effector:Target Ratio

_ k(L/T)P
Cu(T,L)= ST (L/T)P.
Dr. Wiseman calls this the dePillis-Radunskaya Law

3Dudley et al. Science (2002); Graphs from dePillis, Radunskayaand Wiseman Cancer Research:(2005)
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Population model with the dePillis-Radunskaya Law

d3

dTr
dt
dN
dt

o

L
L

[
s+ %

where D =d T.

aT(1—bT)—cNT—D

_ gT%
e~ N+ =5 N—pNT
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d3

dT

dt
dN

dt
dL

at
o

L
L

[
s+ %

where D =d T.

aT(1—bT)—cNT—D

_ 9T%

e~ N+ s N—pNT

Cmis A2 T NT
krp2- 9
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d3

daT
dt
aN
dt
aL
dt
Lp
where D=d—L—_T

5T.
s+ %

aT(1—bT)—cNT-D

- 9T%

e fN+h+T2N pNT

j 2
L—qLT +rNT

—mL+

D
k+ D?

NOTE: The functional forms of the lysis terms distinguish NK -cells from CD8%; (tumor-specific) cells.
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Mystery Remains !!

The mechanisms behind the dePillis-Radunskaya Law is
still not understood.

Intuitively: Immune cell population density should influence
average immune cell kill rate.

Empirical Evidence: Most natural systems are closer to ratio
dependence than to “prey” dependence.

This summer we tested several mechanisms using spatial
models (stay tuned)).
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A model with chemotherapy 4

Tumor: — = nT(1-bT)—cyTE—coTH—a;(1—-e )T

4dePiIIis and Radunskaya A Mathematical Tumor Model with Immune Resistance and Drug Therapy: an
Optimal Control Approach, Journal of Theoretical Medicine, 2001
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Tumor:E = nT(A1-bT)—cTE—coTH—a1(1—-e T
Effector (immune)-% = Ss+r Ei—d E—CET—ax(1—-e Y)E
Tdt kT 7 2

4dePiIIis and Radunskaya A Mathematical Tumor Model with Immune Resistance and Drug Therapy: an
Optimal Control Approach, Journal of Theoretical Medicine, 2001
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4dePiIIis and Radunskaya A Mathematical Tumor Model with Immune Resistance and Drug Therapy: an
Optimal Control Approach, Journal of Theoretical Medicine, 2001
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* subject to the differential equations with Initial
Conditions
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Optimize Treatments

+ Find the control variable v(t) that minimizes the
objective functional
tf

J(v) = Ki T(tf)-l-Kz/ T(t)dt

)

* subject to the differential equations with Initial
Conditions

+ and the inequality constraints

H(t) > .75 x Hpormal

ts
| vdt < ura

fo
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+ Find the control variable v(t) that minimizes the
objective functional

Chemotherapy

t
e eaton J(V) = K T(tr) + Ko /t "T(t)dt
0

* subject to the differential equations with Initial
Conditions

+ and the inequality constraints

H(t) > 75 % Hnormal

ts
| vt < v

b

This problem admits bang-bang solutions (on or off) ‘
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Tumor Growth - Traditional Pulsed Chemotherapy

Tradtioral pulsed chemothe h
radorelpulad chemofrepy: Logits o Tradtiors! puksed chemotherapy: Logistic Growth

1

& Immune

-5 Tumor £33 R= 0T, A3 i lr"‘u"'n:""
TAF 5033 R00T; A3 Dot 031, T 25,010 e Normal

10)0.16; T0)025; NOy1.0 4 Dugat Tumor

10

60

Time in Days

10)=0.15 1(0)=0.1

Red denotes tumor, Magenta denotes “shots” of drug.
Blue denotes immune cells, Green denotes normal cells.
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Optimal contral chematherapy: Logistic Growth
T T

Tumor Growth - Optimal Chemotherapy

Optimal cortrol chemtherapy: Logistic Growth
T T

& Immune

= 33;R=01, A3 -5 Tumot

18F  I0k1; TOR25;MO=10 - Norml
4 Dugat Tumar

Number of Cells
Number of Cells

1(0)=0.15

Tima in Daye

1(0)=0.1
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Morphology and Metastasis

Benign Malignant

B

A
B. Border Even edges Uneven edges
C. Color One shade Two or more shades

D. Diameter Smaller than 6 mm Larger than 6 mm

“This simple ABCD approach is a usaful guide to help identiy moles that shoud be evaluated. Photo
courtesy of Schering Corporation.

] =5 =
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Cellular Automaton (CA)

Add spatial variability = need populations at each point in
space as well as time.

A CELLULAR AUTOMATA (CA) is a grid (in 1-d, 2-d, or 3-d),
with state variables specified in each grid element, and rules
for the evolution of those variables from one time-step to the
next.

EXAMPLE: The grid is a discretization of a slice of tissue,
the state is the cell population:

| | Sample |
RULE:

All cells
divide

Max 100 per
grid element -
extras move
to adjacent
grid

B-w0w []=7 B -0
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Spatal * Includes Tumor cells (living and necrotic), Immune cells
Models (NK and CTL), and normal cells.
+ Two types of nutrients: one for maintenance, MV, e.g.
oxygen and one necessary for cell division N, e.g.
glucose.

5dePillis, Mallett and Radunskaya (2006)
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Use spatial model to test
mechanisms behind the

dePillis-Radunskaya Law.

CA simulations of perforin-mediated lysis

CA simulation

Curve extrapolated from data

0

10
CTL-tumor ratio

T

CA simulations of Fas/FasL-mediated lysis

Fraction killed

Line extrapolated from data
|

A simuations
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Use spatial model to test
mechanisms behind the
dePillis-Radunskaya Law.

CA simulations of perforin-mediated lysis

CA simulations of Fas/FasL-mediated lysis

CA simulation
0| Line extrapolated from data
|

Fraction killed

Curve extrapolated from data

A simuations

107! 10° ! 10°

10 10"
CTL-tumor ratio CTL-tumor ratio

Theory: “Ratio-dependency” comes from perforin-mediated
lysis
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CANCER
RESEARCH

2P
Conguering Cancer.

» First FDA Approval of Therapeutic Cancer Vaccine A Milestone Victory for Field of

Cancer Inmunotherapy

) SHARE w07,
First FDA Approval of Therapeutic Cancer Vaccine A Milestone Victory for Field of Cancer Immunotherapy

Released: 4/30/2010 7:00 PM EDT
Source: Cancer Research Institute

(April 30, 2010 — New York, NY) The Cancer Research Institute celebrates yesterday’s announcement of the first therapeutic cancer
vaccine to receive approval from the U.S. Food and Drug Administration. The vaccine, called Provenge, is produced by Seattle
biotech company Dendreon (NASDAQ:DNDN) and is designed to treat certain forms of advanced prostate cancer.

“The approval of a vaccine to treat cancer is a victory in the history of cancer therapy, and signals the beginning of a new era in
cancer medicine,” said Jill O’Donnell-Tormey, Ph.D., executive director of the U.S.-based Cancer Research Institute (CRI), a
nonprofit organization founded in 1953 that has provided decades of significant support to cancer immunology researchers around
the world so that the development of cancer immunotherapies such as Dendreon’s Provenge might one day be possible.
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Cancer Immunotherapy: clinical
response to anti-CD3 T-cell
vaccine. ©

Anti-CDS3 vaccine given on Day 0, retreat on Day 28

Bpatient of Dr. Charles Wiseman
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A collaborative effort

This project is in close collaboration with a laboratory
immunologist, Dr. Sarah Hook, University of Otago, NZ

UNIVERSITY

| OTAGO

s e —

P, |
IANMAL

New Zealand's National
#School of Pharmacl

# ¥ University of Otago® ™
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+ Two immune cell populations are measured in the
laboratory that indicate antigen specific response:
CD4™" (helper T-cells) and CD8™ (killer T-cells).

+ The vaccine is a peptide recognized by Dendritic Cells
(APC’s).

* Immune response is self-regulatory: phases triggered
by the presence of antigen (APC’s).

+ Self-regulating mechanisms play critical role in
effectiveness of cancer vaccines,

Vaccines
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Model Flow: Each T-cell Type
(CD4* and CD8™)
5 sub-populations: Naive,Proliferating, Apoptotic, Basic,
Memory

Synaptic

. Synaptic connection time: T,
Connection ynap M
time: 7y

Apoptotic
Naive 2 | Proliferating
Average proliferation

window: T,
Synaptic connection time: T,

-

Memory

When antigen is cleared

! Basic
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Model DDE’s (for each T-cell
Type)

uDB(t)— dpD

s— dyN — gNq, Dy,
D
gNTNDTN +p L/ PTP_‘_A’MTMDTM_dP(D)P

0+ D,,
]
7P daA
rs(D)P — dgB

rm(D)P—AM, D,
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A
B
M

Model DDE’s (for each T-cell
Type)

uDB(t)— dpD

s—dyN—gN,,D,,

D
gNTNDTN +p9+TET PTP+A‘MTMDTM_dP(D)P

P
]
7P A
rg(D)P — dgB

m(D)P—AM, D,

where 1 subscripts denote delayed variables: N; = N(t—1).
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A
B
M

Model DDE’s (for each

T-cell

Type)

uDB(t)— dpD

s—dyN —gN,, D,

D
gNTN DTN + p s P‘L'P + AM‘[M D’CM

9+DTP
1
?PP— dsA
rB(D)P— dBB

where 7 subscripts denote delayed variables:

and functions of D reflect antigen clearance:

— dp(D)P

Denditc Cells (D)
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First Kinetics Experiments

- Mice were injected with OVA 7 after being injected with
transgenic OVA-specific CD4 and CD8 cells.

« The numbers of cells were counted at various time
points post-vaccination.

7Ovalbumin protein
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Calibrate the model to data

Calibration of Model to CD4* Data (Mean in Spleen) Calibration of Model to CD8* Data (Mean in Spleen)
T T T T T T T 1 T T T T T T T

bars indicate = 1 SD

Cells x 10°

bars indicate = 1 SD o4

0 5 0 W5 E] 3 w0 s () 5 0 is EJ e [

2 B 20 25
Time in Days Time in Days

Note that the peak CD4™ levels are slightly lower and come
slightly later than the peak CD8™ levels.



CD4 - Helper Cells
T-cells

CD8 - Killer

«O» «F»r « >

a
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Optimization question: When to
give the vaccines?

Cancer vaccines are weak antigens.

Repeated doses are needed to initiate an effective
immune response.

Immune cell production self-regulates: prolonged
contact with antigen isn’t always better.

Find the optimal boosting schedule.
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Spatial 2.00
Models 1.80

Vaccines 160
1.40

1.20 Mouse 1
M Mouse 2

Mouse 3
0.80 Average

1.00

Cells x 1076

0.60

0.40
020 r L
0.00 —

Day 0 CD4 Day 6 CD4 Day 0 CD8 Day 6 CD8

CD8* expansion is much lower than expected. Where is the
boosting effect?
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Cells x 10°

bars indicate + 1 SD

Cells x 10°

Calibration of Model to CD8* Data (Mean in Spleen)

Boost given at peak of data
points:

bars indicate = 1 SD

E
Time in Dz

2
ays
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The number of antigen presenting cells in the spleen, D(t),
is directly affected by an input function, u(t), that represents
a controlled dose of weak antigen (vaccine) entering the
blood stream.
Optimization goal: Find the control function, u(t) (vaccine)
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the number of effector T-cells in the Blood and/or the
number of Memory cells.
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functions.



Cancer:
Mathematical

Challenges Best Dosage Strategy
radomaa 1€ NUMber of antigen presenting cells in the spleen, D(t),
is directly affected by an input function, u(t), that represents
a controlled dose of weak antigen (vaccine) entering the
blood stream.
Optimization goal: Find the control function, u(t) (vaccine)
that maximizes the immune response:
the number of effector T-cells in the Blood and/or the
number of Memory cells.
Admissible controls: 0 < u < umax. In practice: step
functions.
Maximize:

Vaccines

T
JW)=kvIx(T))+ ke [ wix(t)dt
To
where x is the vector of state variables, kq, ko, v, w indicate
relative weights.
In terms of a control problem, this is simple. However, due to the delays in the equations, the situation

becomes complicated . ..
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Heuristic Optimization of Dose
Times

Search space: “populations” of dosage timings and dura-
tions.

Sample population member

1.5 T
1b— — i
0.5 —
ok
a— — 21 ‘ ‘
(o) 0. 1 E 25 3
Lorr YHon t, oFF Yon /1 Y orF
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Heuristic Optimization of Dose

Times

Each “individual” is a sequence of “on”s and “off”s.

1.5

1 e

Sample population member

1100011111100000000110000000000000000D0QA

2.5
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Restrict to one Boost with constant duration (mimics
laboratory setup).

8Villasana, 2004
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annealing. &
+ Example here: Genetic Algorithm.
1,1,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,(
Vaccines = 1,1,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,(

Restrict to one Boost with constant duration (mimics
laboratory setup).

+ Optimization choices: maximize peak response?
Number of memory cells?

8Villasana, 2004
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Genetic algorithms yield many
optimal candidates

Run 1 Run?2 Run3
Maximize CD8 Maximize Memory Maximize Both

| I./\ 2\/& 2

. . VAN

0 10 20 30 4 5 0 10 20 3 40 50 0 10 20 30 40 50
Run4 Run5 Run 6

4 4 4

| | 2 W

0 0 L 0

0 10 20 30 4 5 0 10 20 3 40 50 0 10 20 30 40 50
Run7 Run8 Run9

4 4 4

0 0 0

0 10 20 130 40 5’0 0 10 20 30 40 5’0 0 10 20 30 40 50
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Select “Best of Bests”

Run1 Run2 Run3
4
Maximize CD8 Maximize Memory Maximize Both
2
‘ J/L
0 20 30 4 50 0 10 20 30 50 0 20 30 4 50
Run4 Runs Run6
4
3
2
1
0 20 30 4 50 o 10 20 30 50 0 20 30 4 50
Run7 Run8 Run9
4
3
2
1
10 20 3 40 50 0 10 2 3 50 0 20 30 4 50
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* Mathematical models can suggest mechanisms
governing the interaction between cells.

+ Optimization of model solutions can suggest better
Vaccines timings of dosages.

+ Spatial models can be used to study the effect of
treatments such as radiation, insulin potentiation
therapy and immunotherapies.

* A sensitivity analysis can suggest which parameters
are the best indicators of patient response.
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+ Dosage timings suggested by optimization results
should be tested in the laboratory.
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Radunskaya + Dosage timings suggested by optimization results

should be tested in the laboratory.

A stability analysis suggests that adjuvants that
decrease delays might sustain the production of
effective T-cells. Confirm this theory with laboratory
tests.

Test theories of immune cell kill mechanisms in the
laboratory.

+ Add tumor compartment and immune cell trafficking:

Vaccines

Melanoma/DC Trafficking
Model Compartments
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A Tumor
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to hear more ...
Special session:

Mathematical Modeling of the Immune Response, Cancer
Growth and Treatments
1:00-5:00 p.m. Saturday

A star-studded line-up:
* Lisette dePillis - Modelling the Immune Response
* Doron Levy - Can Mathematics Cure Leukemia®?
* Renee Fister - Optimal Control Scenarios in Cancer
Dynamics
» Peter Hinow - A Spatial Model of Tumor-Host Interaction:
Application of Chemotherapy
Kasia Rejniak - Linking Changes in Epithelial
Morphogenesis to Cancer Mutations: An Integrative Model
Jana Gevertz - Mathematical Simulations of Tumor
Response to Cancer Treatment
*Kara Pham - Predictions of tumor morphological stability
and evaluation against experimental observations
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Thanks to the organizers and . ..

thanks for listening!

aradunskaya@pomona.edu
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