Assignment #20

Due on Wednesday, November 28, 2007

Read Chapter 4 on Differential Forms, pp. 77–110, in Bressoud.

Read Section 5.4 on Multiple Integrals, pp. 120–134, in Bressoud.

Do the following problems

1. Let P and Q denote C^1 scalar fields defined in some open region, D, or \mathbb{R}^2, and define the 1–form
 \[\omega = P \, dy - Q \, dx. \]

 (a) Compute the differential, $d\omega$, of ω.

 (b) Recall that the integral \(\int_C \omega \), where C is a simple closed curve in D, gives the flux of the field
 \[F = P \hat{i} + Q \hat{j} \]
 across the curve C.
 What does the Fundamental Theorem of Calculus,
 \[\int_T d\omega = \int_{\partial T} \omega, \]
 where T is a positively oriented triangle in D, say about the divergence of F and its flux across the boundary of T?

2. Consider the iterated integral
 \[\int_0^1 \int_y^1 e^{-x^2} \, dx \, dy. \]

 (a) Identify the region of integration, R, for this integral and sketch it.

 (b) Change the order of integration in the iterated integral and evaluate the double integral
 \[\int_R e^{-x^2} \, dx \, dy. \]

3. Exercise 2 on page 135 in the text.

4. Exercise 3 on page 135 in the text.

5. Exercise 4 on page 135 in the text.