Assignment #5

Due on Monday September 24, 2007

Read Section 7.1 on Limits, pp. 171–178, in Bressoud.

Do the following problems

1. A subset, U, of \mathbb{R}^n is said to be **open** if for any $x \in U$ there exists a positive number r such that

 \[B_r(x) = \{ y \in \mathbb{R}^n \mid \|y - x\| < r \} \]

 is entirely contained in U.

 (The empty set, \emptyset, is considered to be an open set.)

 (a) Show that if U_1 and U_2 are open subsets of \mathbb{R}^n, then their intersection

 \[U_1 \cap U_2 = \{ y \in \mathbb{R}^n \mid y \in U_1 \text{ and } y \in U_2 \} \]

 is also open.

 (b) Show that the set

 \[\left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \mid y = 0 \right\} \]

 is not an open subset of \mathbb{R}^2.

2. In problem 2 of Assignment #4 you proved that every linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ must be of the form

 \[T(v) = w \cdot v \quad \text{for every } v \in \mathbb{R}^n. \]

 Use this fact together with the Cauchy–Schwarz inequality to prove that T is continuous at every point in \mathbb{R}^n.

3. A subset, U, of \mathbb{R}^n is said to be **convex** if given any two points x and y in U, the straight line segment connecting them is entirely contained in U; in symbols,

 \[\{ x + t(y - x) \in \mathbb{R}^n \mid 0 \leq t \leq 1 \} \subseteq U \]
(a) Prove that the ball \(B_r(O) = \{ x \in \mathbb{R}^n \mid \|x\| < R \} \) is a convex subset of \(\mathbb{R}^n \).

(b) Prove that the “punctured unit disc” in \(\mathbb{R}^2 \),
\[
\left\{ \left(\begin{array}{c} x \\ y \end{array} \right) \in \mathbb{R}^2 \mid 0 < x^2 + y^2 < 1 \right\},
\]
is not a convex set.

4. Let \(x \) and \(y \) denote real numbers.

(a) Starting with the self–evident inequality: \((|x| − |y|)^2 ≥ 0 \), derive the inequality
\[
|xy| ≤ \frac{1}{2}(x^2 + y^2).
\]

(b) Let \(f : \mathbb{R}^2 \to \mathbb{R} \) be defined by
\[
f(x, y) = \begin{cases}
\frac{xy}{\sqrt{x^2+y^2}} & \text{if } (x, y) \neq (0, 0), \\
0 & \text{if } (x, y) = (0, 0),
\end{cases}
\]
Use the inequality derived in the previous part to prove that \(f \) is continuous at the origin.

5. Exercise 10 on page 180 in the text.