Assignment #21

Due on Friday, November 21, 2008

Background and Definitions

Green’s Theorem. The Fundamental Theorem of Calculus,

\[\int_M d\omega = \int_{\partial M} \omega, \]

takes the following form in two-dimensional Euclidean space:

Let \(R \) denote a region in \(\mathbb{R}^2 \) bounded by a simple closed curve, \(\partial R \), made up of a finite number of \(C^1 \) paths traversed in the counterclockwise sense. Let \(P \) and \(Q \) denote two \(C^1 \) scalar fields defined on some open set containing \(R \) and its boundary, \(\partial R \). Then,

\[
\int_R \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dx \, dy = \int_{\partial R} P \, dx + Q \, dy. \quad (1)
\]

Do the following problems

1. Apply Green’s Theorem, as expressed in the formula (1), to the functions \(P(x, y) = -y \) and \(Q(x, y) = x \) to derive the formula

\[
\text{area}(R) = \frac{1}{2} \int_{\partial R} -y \, dx + x \, dy. \quad (2)
\]

to compute the area of the region \(R \).

2. Use the formula (2) derived in the previous theorem to compute the area enclosed by the ellipse

\[
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,
\]

where \(a \) and \(b \) are positive real numbers.
3. In Problem 1(b) of Assignment #20, you showed that another form of Fundamental Theorem of Calculus in two dimensions is

\[
\int_R \text{div}(F) \, dx dy = \text{Flux of } F \text{ across } \partial R,
\]

where \(\text{div}(F) = \frac{\partial P}{\partial x} + \frac{\partial P}{\partial y} \) is the divergence of the vector field \(F = P \hat{i} + Q \hat{j} \); that is, the flux of \(F \) across the boundary of \(R \) is the double integral of the divergence of \(F \) over the region \(R \). Thus, the Fundamental Theorem of Calculus in \(\mathbb{R}^2 \) takes the form

\[
\int_R \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} \right) \, dx dy = \int_{\partial R} F \cdot \hat{n} \, ds, \tag{3}
\]

where \(\hat{n} \) is a unit vector perpendicular to \(\partial R \) and pointing to the outside of \(\partial R \).

Use formula (3) to compute the flux of the field \(F = x \hat{i} + y \hat{j} \) across the square with vertices \((-1, -1), (1, -1), (1, 1) \) and \((-1, 1) \).

4. Let \(f \) and \(g \) be two scalar fields defined on some open subset of \(\mathbb{R}^2 \). Suppose that \(f \) and \(g \) are \(C^1 \) and that \(\nabla g \) is a \(C^1 \) vector field. Show that

\[
\text{div}(f \nabla g) = \nabla f \cdot \nabla g + f \text{div}(\nabla g).
\]

\(\text{div}(\nabla g) \) is called the Laplacian of \(g \) and is usually denoted by \(\Delta g \); thus,

\[
\Delta g = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2}.
\]

5. Let \(f \) and \(g \) be as in the previous problem. Use formula (3) and the result from the previous problem to show that

\[
\int_R f \Delta g \, dx dy = \int_{\partial R} f \frac{\partial g}{\partial n} \, ds - \int_R \nabla f \cdot \nabla g \, dx dy,
\]

where \(\frac{\partial g}{\partial n} \) denotes the derivative of \(g \) in the direction of \(\hat{n} \), or \(D_{\hat{n}} g \).