1. Let I denote an open interval in \mathbb{R}, and $\sigma: I \to \mathbb{R}^n$ be a C^1 path. For fixed $a \in I$, define

$$s(t) = \int_a^t \|\sigma'(\tau)\| \, d\tau \quad \text{for all } t \in I.$$

Show that s is differentiable and compute $s'(t)$ for all $t \in I$.

Solution: Since the σ is a C^1 path, the map $t \mapsto \|\sigma'(t)\|$ is continuous on I. Therefore, by the Fundamental Theorem of Calculus, $s(t)$ is differentiable and

$$s'(t) = \frac{d}{dt} \int_a^t \|\sigma'(\tau)\| \, d\tau = \|\sigma'(t)\| \quad \text{for all } t \in I.$$

2. Let σ and s be as defined in the previous problem. Suppose, in addition, that $\sigma'(t)$ is never the zero vector for all t in I. Show that s is a strictly increasing function of t and that it is, therefore, one–to–one.

Solution: From the previous problem,

$$s'(t) = \|\sigma'(t)\| \quad \text{for all } t \in I,$$

so that, since $\sigma'(t)$ is never the zero vector for all t in I, $s'(t) > 0$ for all $t \in I$. It then follows that s is a strictly increasing function of t and, therefore, it is a one–to–one map.

3. Let σ and s be as defined in Problem 1. We can re–parameterize σ by using s as a parameter. We therefore obtain $\sigma(s)$, where s is the *arc length* parameter. Differentiate the expression

$$\sigma(s(t)) = \sigma(t)$$

with respect to t using the Chain Rule. Conclude that, if $\sigma'(t)$ is never the zero vector for all t in I, then $\sigma'(s)$ is always a unit vector.

The vector $\sigma'(s)$ is called the *unit tangent vector* to the path σ.
Solution: Differentiate

\[\sigma(s(t)) = \sigma(t) \]

with respect to \(t \) to get

\[\frac{d}{dt} \sigma(s(t)) = \sigma'(t); \]

thus, by the Chain Rule,

\[\sigma'(s) s'(t) = \sigma'(t), \]

or

\[\sigma'(s) \|\sigma'(t)\| = \sigma'(t). \]

Since \(\|\sigma'(t)\| \neq 0 \) for all \(t \in I \), we have that

\[\sigma'(s) = \frac{1}{\|\sigma'(t)\|} \sigma'(t), \]

and therefore \(\sigma'(s) \) is a unit vector. \(\square \)

4. For \(a \) and \(b \), positive real numbers, the expression

\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \]

defines an ellipse in the \(xy \)-plane \(\mathbb{R}^2 \).

Sketch the ellipse, give a parametrization for it, and set up the integral that yields its arc length.

Solution: A sketch of the ellipse for the case \(b < a \) is shown in Figure 1.

The path

\[\sigma(t) = (a \cos t, b \sin t) \quad \text{for all } \ t \in [0, 2\pi] \]

is a \(C^1 \) parametrization of the ellipse. The arc length of the ellipse is then given by

\[\int_0^{2\pi} \|\sigma'(t)\| \, dt, \]

where

\[\sigma'(t) = (-a \sin t, b \cos t) \quad \text{for all } \ t \in \mathbb{R}, \]
Thus
\[
\int_0^{2\pi} \|\sigma'(t)\| \, dt = \int_0^{2\pi} \sqrt{a^2 \sin^2 t + b^2 \cos^2 t} \, dt.
\]
\[\Box\]

5. Let \(\sigma: [0, \pi] \to \mathbb{R}^3 \) be defined by \(\sigma(t) = t \hat{i} + t \sin t \hat{j} + t \cos t \hat{k} \) for all \(t \in [0, \pi] \). Compute the arc length of the curve parametrized by \(\sigma \).

Solution: Let \(C \) denote the curve parametrized by \(\sigma \); then,
\[
\ell(C) = \int_0^\pi \|\sigma'(t)\| \, dt,
\]
where
\[
\sigma'(t) = \hat{i} + (\sin t + t \cos t) \hat{j} + (\cos t - t \sin t) \hat{k}
\]
for all \(t \in \mathbb{R} \), and therefore
\[
\|\sigma'(t)\| = \sqrt{1 + (\sin t + t \cos t)^2 + (\cos t - t \sin t)^2}
\]
\[
= \sqrt{2 + t^2}.
\]
Thus,
\[
\ell(C) = \int_0^\pi \sqrt{2 + t^2} \, dt
\]
\[
= \left[\frac{t}{2} \sqrt{2 + t^2} + \ln |t + \sqrt{2 + t^2}| \right]_0^\pi
\]
\[
= \frac{\pi}{2} \sqrt{2 + \pi^2} + \ln(\pi + \sqrt{2 + \pi^2}) - \frac{1}{2} \ln 2.
\]