Assignment #14

Due on Monday, November 23, 2009

Read Section 3.1 on *The Calculus of Curves*, pp. 53–65, in Bressoud.

Read Section 5.2 on *Line Integrals*, pp. 113–119, in Bressoud.

Do the following problems

1. Exercise 4 on page 119 in the text.

2. Exercises 6(d)(e)(f) on pages 119 and 120 in the text.

3. Let \(\sigma: [a, b] \to \mathbb{R}^n \) be a \(C^1 \) parametrization of a curve \(C \) in \(\mathbb{R}^n \). Let \(h: [c, d] \to [a, b] \) be a one–to–one and onto map such that \(h'(t) > 0 \) for all \(t \in [c, d] \). Define \(\gamma(t) = \sigma(h(t)) \) for all \(t \in [c, d] \).

\(\gamma: [c, d] \to \mathbb{R}^n \) is called a *reparametrization* of \(\sigma \).

Let \(F: U \to \mathbb{R}^n \) denote a continuous vector field defined on a region \(U \) of \(\mathbb{R}^n \) which contains the curve \(C \). Show that

\[
\int_a^b F(\sigma(\tau)) \cdot \sigma'(\tau) \, d\tau = \int_c^d F(\gamma(t)) \cdot \gamma'(t) \, dt.
\]

Thus, the line integral \(\int_C F \cdot T \, ds \) is independent of reparametrization.

4. Let \(\sigma: [0, 1] \to \mathbb{R}^n \) be a \(C^1 \) parametrization of a curve \(C \) in \(\mathbb{R}^n \). Give a \(C^1 \) reparametrization, \(\gamma: [0, 1] \to \mathbb{R}^n \), of \(\sigma \) in which the curve \(C \) is traversed in the opposite direction as that of \(\sigma \). What is \(\gamma' \) in terms of \(\sigma' \)?

5. The flux of a 2–dimensional vector field,

\[
F(x, y) = P(x, y) \hat{i} + Q(x, y) \hat{j},
\]

across a simple, closed curve, \(C \), is given by

\[
\int_C P \, dy - Q \, dx.
\]

Compute the flux of the following fields across the given curves

(a) \(F(x, y) = x^2 \hat{i} + y^2 \hat{j} \) and \(C \) is the boundary of the square with vertices \((0, 0), (1, 0), (1, 1) \) and \((0, 1)\).

(b) \(F(x, y) = x \hat{i} + y \hat{j} \) and \(C \) is the boundary of the unit disk in \(\mathbb{R}^2 \).