Assignment #15
Due on Monday, November 30, 2009

Read Section 5.4 on Multiple Integrals, pp. 120–134, in Bressoud.

Background and Definitions

- **Flux**
 Let \(F = P \hat{i} + Q \hat{j} \), where \(P \) and \(Q \) are continuous scalar fields defined on an open subset, \(U \), of \(\mathbb{R}^2 \). Suppose there is a \(C^1 \) simple closed curve \(C \) contained in \(U \). Then the flux of \(F \) across \(C \) is given by
 \[
 \int_C F \cdot \hat{n} \, ds = \int_C P \, dy - Q \, dx.
 \]
 Here, \(\hat{n} \) denotes a unit vector perpendicular to \(C \) and pointing to the outside of \(C \).

- **Divergence of a Vector Field in \(\mathbb{R}^2 \).**
 Given a \(C^1 \) vector field, \(F(x, y) = P(x, y)\hat{i} + Q(x, y)\hat{j} \), defined on some open subset \(U \) of \(\mathbb{R}^2 \), the divergence of \(F \) is defined to be
 \[
 \text{div} F(x, y) = \frac{\partial P}{\partial x}(x, y) + \frac{\partial Q}{\partial y}(x, y) \quad \text{for all } (x, y) \in U.
 \]

- **Green’s Theorem.**
 Let \(R \) denote a region in \(\mathbb{R}^2 \) bounded by a simple closed curve, \(\partial R \), made up of a finite number of \(C^1 \) paths traversed in the counterclockwise sense. Let \(P \) and \(Q \) denote two \(C^1 \) scalar fields defined on some open set containing \(R \) and its boundary, \(\partial R \). Then,
 \[
 \iint_R \text{div} F \, dx \, dy = \oint_{\partial R} F \cdot \hat{n} \, ds.
 \]

Do the following problems

1. Let \(C \) denote the unit circle traversed in the counterclockwise direction. Evaluate the line integral \(\int_C x^3 \, dy - y^3 \, dx \).
2. Let $F(x, y) = y \mathbf{i} - x \mathbf{j}$ and R be the square in the xy–plane with vertices $(0, 0)$, $(2, -1)$, $(3, 1)$ and $(1, 2)$. Evaluate $\int_{\partial R} F \cdot n \, ds$.

3. Consider the iterated integral

$$\int_0^1 \int_y^1 e^{-x^2} \, dx \, dy.$$

(a) Identify the region of integration, R, for this integral and sketch it.

(b) Change the order of integration in the iterated integral and evaluate the double integral

$$\int_R e^{-x^2} \, dx \, dy.$$

4. What is the region R over which you integrate when evaluating the double integral

$$\int_0^1 \int_{x^2}^1 x \sqrt{1 - y^2} \, dy \, dx?$$

Rewrite this as an iterated integral first with respect to x, then with respect to y. Evaluate this integral. Which order of integration is easier?

5. What is the region R over which you integrate when evaluating the double integral

$$\int_1^2 \int_1^x \frac{x}{\sqrt{x^2 + y^2}} \, dy \, dx?$$

Rewrite this as an iterated integral first with respect to x, then with respect to y. Evaluate this integral. Which order of integration is easier?