Assignment #2

Due on Monday, September 14, 2009

Read Chapter 2 on Vector Algebra in Bressoud (pp. 29–49).

Do the following problems

1. Recall that the dot product, or inner product, of two vectors in \mathbb{R}^n is symmetric, bi–linear and positive definite; that is, for vectors v, v_1, v_2 and w in \mathbb{R}^n,

 (i) $v \cdot w = w \cdot v$

 (ii) $(c_1 v_1 + c_2 v_2) \cdot w = c_1 v_1 \cdot w + c_2 v_2 \cdot w$, and

 (iii) $v \cdot v \geq 0$ for all $v \in \mathbb{R}^n$ and $v \cdot v = 0$ if and only if v is the zero vector.

 Use these properties of the inner product in \mathbb{R}^n to derive the following properties of the norm $\| \cdot \|$ in \mathbb{R}^n, where $\|v\| = \sqrt{v \cdot v}$ for all vectors $v \in \mathbb{R}^n$.

 (a) $\|v\| \geq 0$ for all $v \in \mathbb{R}^n$ and $\|v\| = 0$ if and only if $v = \vec{0}$.

 (b) For a scalar c, $\|cv\| = |c|\|v\|.$

2. Recall the Cauchy-Schwarz inequality: For any vectors v and w in \mathbb{R}^n,

 \[|v \cdot w| \leq \|v\| \|w\|. \]

 Use this inequality to derive the triangle inequality: For any vectors v and w in \mathbb{R}^n,

 \[\|v + w\| \leq \|v\| + \|w\|. \]

 (Suggestion: Start with the expression $\|v + w\|^2$ and use the properties of the inner product to simplify it.)

3. Given two non–zero vectors v and w in \mathbb{R}^n, the cosine of the angle, θ, between the vectors can be defined by

 \[\cos \theta = \frac{v \cdot w}{\|v\| \|w\|}. \]

 Use the Cauchy-Schwarz inequality to justify why this definition makes sense.
4. Two vectors v and w in \mathbb{R}^n are said to be orthogonal or perpendicular, if and only if $v \cdot w = 0$.

Show that if v and w are orthogonal, then

$$\|v + w\|^2 = \|v\|^2 + \|w\|^2.$$

Give a geometric interpretation of this result in two–dimensional Euclidean space.

5. A vector u in \mathbb{R}^n is said to be a unit vector if and only if $\|u\| = 1$. Let u be a unit vector in \mathbb{R}^n and v be any vector in \mathbb{R}^n.

(a) Give the parametric equation of the line through origin in the direction of u.

(b) Let $f(t) = \|v - tu\|^2$ for all $t \in \mathbb{R}^n$. Explain why this function gives the square of the distance from the point at v to a point on the line through the origin in the direction of u.

(c) Show that $f(t)$ is minimized when $t = v \cdot u$.