Review Problems for Exam 2

1. Define the scalar field $f : \mathbb{R}^n \to \mathbb{R}$ by $f(v) = \frac{1}{2} \|v\|^2$ for all $v \in \mathbb{R}^n$. Show that f is differentiable on \mathbb{R}^n and compute the linear map $Df(u) : \mathbb{R}^n \to \mathbb{R}$ for all $u \in \mathbb{R}^n$. What is the gradient of f at u for all $x \in \mathbb{R}^n$?

2. Let $g : [0, \infty) \to \mathbb{R}$ be a differentiable, real–valued function of a single variable, and let $f(x, y) = g(r)$ where $r = \sqrt{x^2 + y^2}$.

 (a) Compute $\frac{\partial r}{\partial x}$ in terms of x and r, and $\frac{\partial r}{\partial y}$ in terms of y and r.

 (b) Compute ∇f in terms of $g'(r)$, r and the vector $\mathbf{r} = \hat{x}i + \hat{y}j$.

3. Let $f : U \to \mathbb{R}$ denote a scalar field defined on an open subset U of \mathbb{R}^n, and let \hat{u} be a unit vector in \mathbb{R}^n. If the limit

$$\lim_{t \to 0} \frac{f(v + t\hat{u}) - f(v)}{t}$$

exists, we call it the directional derivative of f at v in the direction of the unit vector \hat{u}. We denote it by $D_{\hat{u}}f(v)$.

 (a) Show that if f is differentiable at $v \in U$, then, for any unit vector \hat{u} in \mathbb{R}^n, the directional derivative of f in the direction of \hat{u} at v exists, and

$$D_{\hat{u}}f(v) = \nabla f(v) \cdot \hat{u},$$

where $\nabla f(v)$ is the gradient of f at v.

 (b) Suppose that $f : U \to \mathbb{R}$ is differentiable at $v \in U$. Prove that if $D_{\hat{u}}f(v) = 0$ for every unit vector \hat{u} in \mathbb{R}^n, then $\nabla f(v)$ must be the zero vector.

 (c) Suppose that $f : U \to \mathbb{R}$ is differentiable at $v \in U$. Use the Cauchy–Schwarz inequality to show that the largest value of $D_{\hat{u}}f(v)$ is $\|\nabla f(v)\|$ and it occurs when \hat{u} is in the direction of $\nabla f(v)$.

4. The scalar field $f : U \to \mathbb{R}$ is said to have a local minimum at $x \in U$ if there exists $r > 0$ such that $B_r(x) \subseteq U$ and

$$f(x) \leq f(y) \text{ for every } y \in B_r(x).$$

Prove that if f is differentiable at $x \in U$ and f has a local minimum at x, then $\nabla f(x) = 0$, the zero vector in \mathbb{R}^n.
5. Let I denote an open interval in \mathbb{R}. Suppose that $\sigma: I \to \mathbb{R}^n$ and $\gamma: I \to \mathbb{R}^n$ are paths in \mathbb{R}^n. Define a real valued function $f: I \to \mathbb{R}$ of a single variable by

$$f(t) = \sigma(t) \cdot \gamma(t) \quad \text{for all} \quad t \in I;$$

that is, $f(t)$ is the dot product of the two paths at t.

Show that if σ and γ are both differentiable on I, then so is f, and

$$f'(t) = \sigma'(t) \cdot \gamma(t) + \sigma(t) \cdot \gamma'(t) \quad \text{for all} \quad t \in I.$$

6. Let $\sigma: I \to \mathbb{R}^n$ denote a differentiable path in \mathbb{R}^n. Show that if $\|\sigma(t)\|$ is constant for all $t \in I$, then $\sigma'(t)$ is orthogonal to $\sigma(t)$ for all $t \in I$.

7. A particle is following a path in three–dimensional space given by

$$\sigma(t) = (e^t, e^{-t}, 1 - t) \quad \text{for} \quad t \in \mathbb{R}.$$

At time $t_o = 1$, the particle flies off on a tangent.

(a) Where will the particle be at time $t_1 = 2$?

(b) Will the particle ever hit the xy–plane? Is so, find the location on the xy plane where the particle hits.

8. Let U denote an open and convex subset of \mathbb{R}^n. Suppose that $f: U \to \mathbb{R}$ is differentiable at every $x \in U$. Fix x and y in U, and define $g: [0, 1] \to \mathbb{R}$ by

$$g(t) = f(x + t(y - x)) \quad \text{for} \quad 0 \leq t \leq 1.$$

(a) Explain why the function g is well defined.

(b) Show that g is differentiable on $(0, 1)$ and that

$$g'(t) = \nabla f(x + t(y - x)) \cdot (y - x) \quad \text{for} \quad 0 < t < 1.$$

(Suggestion: Consider

$$\frac{g(t + h) - g(t)}{h} = \frac{f(x + t(y - x) + h(y - x)) - f(x + t(y - x))}{h}$$

and apply the definition of differentiability of f at the point $x + t(y - x)$.)
(c) Use the Mean Value Theorem for derivatives to show that there exists a point \(z \) is the line segment connecting \(x \) to \(y \) such that

\[
f(y) - f(x) = D_{\hat{u}}f(z)\|y - x\|,
\]

where \(\hat{u} \) is the unit vector in the direction of the vector \(y - x \); that is,

\[
\hat{u} = \frac{1}{\|y - x\|}(y - x).
\]

(Hint: Observe that \(g(1) - g(0) = f(y) - f(x) \).)

9. Prove that if \(U \) is an open and convex subset of \(\mathbb{R}^n \), and \(f: U \to \mathbb{R} \) is differentiable on \(U \) with \(\nabla f(v) = 0 \) for all \(v \in U \), then \(f \) must be a constant function.

10. Let \(f \) be a scalar field defined on \((x,y)\) where \(x = r \cos \theta, y = r \sin \theta \). Show that

\[
\nabla f = \frac{\partial f}{\partial r} \vec{u}_r + \frac{1}{r} \frac{\partial f}{\partial \theta} \vec{u}_\theta,
\]

where \(\vec{u}_r = (\cos \theta, \sin \theta) \) and \(\vec{u}_\theta = (-\sin \theta, \cos \theta) \).

(Hint: First find \(\frac{\partial f}{\partial r} \) and \(\frac{\partial f}{\partial \theta} \) in terms of \(\frac{\partial f}{\partial x} \) and \(\frac{\partial f}{\partial y} \) and then solve for \(\frac{\partial f}{\partial x} \) and \(\frac{\partial f}{\partial y} \) int terms of \(\frac{\partial f}{\partial r} \) and \(\frac{\partial f}{\partial \theta} \).

11. Let \(U \) be an open subset of \(\mathbb{R}^n \) and \(I \) be an open interval. Suppose that \(f: U \to \mathbb{R} \) is a differentiable scalar field and \(\sigma: I \to \mathbb{R}^n \) be a differentiable path whose image lies in \(U \). Suppose also that \(\sigma'(t) \) is never the zero vector. Show that if \(f \) has a local maximum or a local minimum at some point on the path, then \(\nabla f \) is perpendicular to the path at that point.

Suggestion: Consider the real valued function of a single variable \(g(t) = f(\sigma(t)) \) for all \(t \in I \).

12. Let \(\sigma: [a, b] \to \mathbb{R}^n \) be a differentiable, one–to–one path. Suppose also that \(\sigma'(t) \), is never the zero vector. Let \(h: [c, d] \to [a, b] \) be a one–to–one and onto map such that \(h'(t) \neq 0 \) for all \(t \in [c, d] \). Define

\[
\gamma(t) = \sigma(h(t)) \quad \text{for all} \quad t \in [c, d].
\]

\(\gamma: [c, d] \to \mathbb{R}^n \) is a called a reparametrization of \(\sigma \)

(a) Show that \(\gamma \) is a differentiable, one–to–one path.
(b) Compute \(\gamma'(t) \) and show that it is never the zero vector.
(c) Show that \(\sigma \) and \(\gamma \) have the same image in \(\mathbb{R}^n \).