Solutions to Assignment #12

1. Suppose that you observe n iid Bernoulli(p) random variables, denoted by X_1, X_2, \ldots, X_n. Find the LRT rejection region for the test of $H_0: p \leq p_o$ versus $H_1: p > p_o$ in terms of the test statistic $Y = \sum_{i=1}^{n} X_i$.

Solution: The likelihood ratio statistic is

$$
\Lambda(x_1, x_2, \ldots, x_n) = \frac{\sup_{p \leq p_o} L(p \mid x_1, x_2, \ldots, x_n)}{L(\hat{p} \mid x_1, x_2, \ldots, x_n)},
$$

where

$$
L(p \mid x_1, x_2, \ldots, x_n) = p^y (1 - p)^{n-y}, \quad \text{for } y = \sum_{i=1}^{n} x_i,
$$

is the likelihood function, and

$$
\hat{p} = \frac{1}{n} y = \bar{x}
$$

is the MLE for p.

Observe that if $p_o \geq \hat{p}$, then

$$
\sup_{p \leq p_o} L(p \mid x_1, x_2, \ldots, x_n) = L(\hat{p} \mid x_1, x_2, \ldots, x_n)
$$

and so $\Lambda(x_1, x_2, \ldots, x_n) = 1$: thus, in this case we would not get a rejection region for the LRT,

$$
R: \quad \Lambda(x_1, x_2, \ldots, x_n) \leq c,
$$

for some $0 < c < 1$. We therefore have that $p_o < \hat{p}$ so that

$$
\Lambda(x_1, x_2, \ldots, x_n) = \frac{L(p_o \mid x_1, x_2, \ldots, x_n)}{L(\hat{p} \mid x_1, x_2, \ldots, x_n)} = \frac{p_o^y (1 - p_o)^{n-y}}{\hat{p}^y (1 - \hat{p})^{n-y}},
$$
where $\hat{p} > p_o$, which can in turn be written as

$$\Lambda(x_1, x_2, \ldots, x_n) = \frac{1}{\left(\frac{\hat{p}}{p_o}\right)^y} \left(\frac{1}{p_o} - \frac{1}{\hat{p}}\right)^{n-y}. $$

Setting $t = \frac{\hat{p}}{p_o}$, we see that Λ can be written as a function of t as follows

$$\Lambda(t) = \begin{cases}
1 & \text{for } 0 \leq t \leq 1, \\
\frac{1}{t^{np_0}} \cdot \left(\frac{1}{1 - p_0 t}\right)^{n-\frac{np_0}{t}}, & \text{for } 1 < t \leq \frac{1}{p_0},
\end{cases}$$

since $\hat{p} > p_o$, where we have used the fact that $\hat{p} = \frac{1}{n}y$ so that $y = np_0 t$.

The graph of $\Lambda(t)$ can be shown to be like the one sketched as the one shown in Figure 1 on page 3, where we have sketched the case $p_o = 1/4$ and $n = 20$ for $0 \leq t \leq 4$. The sketch in Figure 1 shows that $\Lambda(t)$ decreases for $t > 1$; thus, given any positive value of c such that $c < 1$ and $c > p_0^n$, there exists a positive value t_2 such that $t_2 > 1$, and

$$\Lambda(t_2) = c,$$

and

$$\Lambda(t) \leq c \quad \text{for} \quad t \geq t_2.$$

Thus, the LRT rejection region for the test of $H_0: \ p \leq p_o$ versus $H_1: \ p > p_o$ is equivalent to

$$\frac{\hat{p}}{p_o} \geq t_2,$$

which we could rephrase in terms of $Y = \sum_{i=1}^{n} X_i$ as

$$R: \ Y \geq t_2 np_0,$$

for some t_2 with $t_2 > 1$. This rejection region can also be phrased as

$$R: \ Y > np_o + b,$$
Figure 1: Sketch of graph of $\Lambda(t)$ for $p_o = 1/4$, $n = 20$, and $0 \leq t \leq 4$
for some \(b > 0 \). The value of \(b \) will then be determined by the significance level that we want to impose on the test, and \(Y \) is the statistic

\[
Y = \sum_{i=1}^{n} X_i,
\]

which counts the number of successes in the sample. \(\square \)

2. Consider the likelihood ratio test for \(H_0: p = p_0 \) versus \(H_1: p = p_1 \), where \(p_0 \neq p_1 \), based on a random sample \(X_1, X_2, \ldots, X_n \) from a Bernoulli(\(p \)) distribution for \(0 < p < 1 \). Show that, if \(p_1 > p_0 \), then the likelihood ratio statistic for the test is is a monotonically decreasing function of \(Y = \sum_{i=1}^{n} X_i \). Conclude, therefore, that if the test rejects \(H_0 \) at the significance level \(\alpha \) for an observed value \(\tilde{y} \) of \(Y \), it will also rejects \(H_0 \) at that level for \(Y > \tilde{y} \).

Solution: The likelihood ratio statistic in this case is

\[
\Lambda(x_1, x_2, \ldots, x_n) = \frac{p_0^y(1 - p_0)^{n-y}}{p_1^y(1 - p_1)^{n-y}}, \quad \text{for} \quad y = \sum_{i=1}^{n} x_i,
\]

which can be written as

\[
\Lambda(x_1, x_2, \ldots, x_n) = a^n r^y,
\]

where

\[
a = \frac{1 - p_0}{1 - p_1} > 0 \quad \text{and} \quad r = \frac{p_0(1 - p_1)}{p_1(1 - p_0)} < 1,
\]

since \(p_1 > p_0 \). It then follows that the likelihood ratio statistic for the test is is a monotonically decreasing function of \(Y = \sum_{i=1}^{n} X_i \), since \(r < 1 \).

Suppose now that the test rejects \(H_0 \) at the significance level \(\alpha \) for an observed value \(\tilde{y} \) of \(Y \); that is

\[
\Lambda(\tilde{y}) \leq c,
\]

for some \(c \) in \((0, 1) \) determined by \(\alpha \). Then, for any value of \(y \) which is bigger than \(\tilde{y} \),

\[
\Lambda(y) < \Lambda(\tilde{y}) \leq c, \tag{1}
\]

since \(\Lambda \) is a decreasing function of \(y \). It then follows from (1) that the LRT will also rejects \(H_0 \) at that level for \(Y > \tilde{y} \). \(\square \)
3. We wish to use an LRT to test the hypothesis \(H_0 : \mu = \mu_0 \) against the alternative \(H_1 : \mu \neq \mu_0 \) based on a random sample, \(X_1, X_2, \ldots, X_n \), from a normal(\(\mu, 1 \)) distribution.

(a) Give the maximum likelihood estimator, \(\hat{\mu} \), for \(\mu \) based on the sample.

Solution: The likelihood function in this problem is

\[
L(\mu \mid x_1, x_2, \ldots, x_n) = \frac{e^{-\sum_{i=1}^{n}(x_i-\mu)^2/2}}{(2\pi)^{n/2}} \quad \text{for } \mu \in \mathbb{R}.
\]

To find the MLE for \(\mu \), it suffices to maximize the natural logarithm of the likelihood function

\[
\ell(\mu) = -\frac{1}{2} \sum_{i=1}^{n} (x_i - \mu)^2 - \frac{n}{2} \ln(2\pi), \quad \text{for } \mu \in \mathbb{R}.
\]

Taking derivatives we get

\[
\ell'(\mu) = \sum_{i=1}^{n} (x_i - \mu) = \sum_{i=1}^{n} x_i - n\mu,
\]

and

\[
\ell''(\mu) = \sum_{i=1}^{n} (x_i - \mu) = -n < 0.
\]

It then follows that \(\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i = \bar{x} \) is the only critical point of \(\ell \) and \(\ell''(\hat{\mu}) < 0 \). Thus, the likelihood function is maximized at \(\hat{\mu} = \bar{x} \), the sample mean. \(\square \)

(b) Give the likelihood ratio statistic for the test.

Solution: The likelihood ratio statistic is

\[
\Lambda(x_1, x_2, \ldots, x_n) = \frac{L(\mu_0 \mid x_1, x_2, \ldots, x_n)}{L(\hat{\mu} \mid x_1, x_2, \ldots, x_n)},
\]

where \(\hat{\mu} = \bar{x} \) is the MLE for \(\mu \). We then have that

\[
\Lambda(x_1, x_2, \ldots, x_n) = \frac{e^{-\sum_{i=1}^{n}(x_i-\mu_0)^2/2}}{e^{-\sum_{i=1}^{n}(x_i-\bar{x})^2/2}},
\] (2)
where
\[
\sum_{i=1}^{n} (x_i - \mu_o)^2 = \sum_{i=1}^{n} (x_i - \bar{x} + \bar{x} - \mu_o)^2
\]
\[
= \sum_{i=1}^{n} (x_i - \bar{x})^2 + \sum_{i=1}^{n} (\bar{x} - \mu_o)^2
\]
\[
= \sum_{i=1}^{n} (x_i - \bar{x})^2 + n(\bar{x} - \mu_o)^2,
\]
since
\[
\sum_{i=1}^{n} 2(x_i - \bar{x})(\bar{x} - \mu_o) = 2(\bar{x} - \mu_o) \sum_{i=1}^{n} (x_i - \bar{x}) = 0.
\]
Hence, from (2) we have that
\[
\Lambda(x_1, x_2, \ldots, x_n) = e^{-n(\bar{x} - \mu_o)^2/2},\quad (3)
\]
where \(\bar{x}\) denotes the sample mean. \(\Box\)

(c) Express the LRT rejection region in terms of the sample mean \(X_n\).

Solution: The LRT rejection region is given by
\[
R: \quad \Lambda(x_1, x_2, \ldots, x_n) \leq c,
\]
for some \(c\) with \(0 < c < 1\). It then follows from equation (3) in part (b) of this problem that \(H_o\) is rejected if
\[
e^{-n(\bar{x} - \mu_o)^2/2} \leq c,
\]
or, taking natural logarithm on both sides of the last inequality,
\[
-n(\bar{x} - \mu_o)^2/2 \leq \ln c,
\]
or
\[
n(\bar{x} - \mu_o)^2 \geq -2 \ln c,
\]
or
\[
\sqrt{n}|\bar{x} - \mu_o| \geq \sqrt{-2 \ln c} \equiv b > 0.
\]
Thus, the LRT will reject \(H_o\) if
\[
\sqrt{n}|X_n - \mu_o| \geq b,
\]
for some \(b > 0\) determined by the significance level \(\alpha\). \(\Box\)
4. Let \(X_1, X_2, \ldots, X_n \) denote a random sample from a uniform(0, \(\theta \)) distribution for some parameter \(\theta > 0 \).

(a) Give the likelihood function \(L(\theta \mid x_1, x_2, \ldots, x_n) \).

Solution: The pdf for each of the \(X_i \)s is
\[
f(x \mid \theta) = \begin{cases} \frac{1}{\theta} & \text{if } 0 < x < \theta; \\ 0 & \text{otherwise}. \end{cases}
\]

Thus, the likelihood function is
\[
L(\theta \mid x_1, x_2, \ldots, x_n) = \begin{cases} \frac{1}{\theta^n} & \text{if } 0 < x_1, x_2, \ldots, x_n < \theta; \\ 0 & \text{otherwise}. \end{cases} \tag{4}
\]

(b) Give the maximum likelihood estimator for \(\theta \).

Solution: Observe that the likelihood function in (4) is a decreasing function of \(\theta \). Thus, \(L(\theta \mid x_1, x_2, \ldots, x_n) \) will the largest when \(\theta \) is the smallest value it can take, \(\hat{\theta} \), based on the sample. This value is the maximum of the values \(x_1, x_2, \ldots, x_n \), because, if \(x_i > \theta \) for some \(i \), then \(L(\theta \mid x_1, x_2, \ldots, x_n) = 0 \) according to the definition of the likelihood function given (4). It then follows that the MLE for \(\theta \) is
\[
\hat{\theta} = \max\{X_1, X_2, \ldots, X_n\}.
\]

5. Let \(R \) denote the rejection region for an LRT of \(H_0: \theta = \theta_0 \) versus \(H_1: \theta = \theta_1 \) based on a random sample, \(X_1, X_2, \ldots, X_n \), from continuous distribution with pdf \(f(x \mid \theta) \). Let \(L(\theta \mid x_1, x_2, \ldots, x_n) \) denote the likelihood function. Suppose the LRT has significance level \(\alpha \).

(a) Explain why
\[
\alpha = \int_R L(\theta_0 \mid x_1, x_2, \ldots, x_n) \, dx_1 \, dx_2 \cdots \, dx_n.
\]
Answer: The significance level α is the probability the the LRT will reject H_o when H_o is true; in other words, when $\theta = \theta_o$. Thus,

$$
\alpha = P((x_1, x_2, \ldots, x_n) \in R)
$$

$$
= \int_R f(x_1, x_2, \ldots, x_n \mid \theta_o) \; dx_1 \; dx_2 \cdots \; dx_n,
$$

where R is the rejection region of the LRT and $f(x_1, x_2, \ldots, x_n \mid \theta_o)$ is the joint distribution of the sample for the case in which H_o is true. It then follows that

$$
\alpha = \int_R L(\theta_o \mid x_1, x_2, \ldots, x_n) \; dx_1 \; dx_2 \cdots \; dx_n,
$$

by the definition of the likelihood function. □

(b) Explain why the power of the test is

$$
\gamma(\theta_1) = \int_R L(\theta_1 \mid x_1, x_2, \ldots, x_n) \; dx_1 \; dx_2 \cdots \; dx_n.
$$

Answer: The power of the test, $\gamma(\theta_1)$, is the probability the the LRT will reject H_o when H_o is false; in other words, when $\theta = \theta_1$. Thus,

$$
\gamma(\theta_1) = \int_R f(x_1, x_2, \ldots, x_n \mid \theta_1) \; dx_1 \; dx_2 \cdots \; dx_n,
$$

which yields

$$
\gamma(\theta_1) = \int_R L(\theta_1 \mid x_1, x_2, \ldots, x_n) \; dx_1 \; dx_2 \cdots \; dx_n.
$$

by the definition of the likelihood function. □

(c) Explain why

$$
\alpha \leq c \gamma(\theta_1),
$$

where c is the critical value used in the definition of the rejection region, R, for the LRT.

Solution: Since, $\Lambda(x_1, x_2, \ldots, x_n) \leq c$ on R, for some $c \in (0, 1)$ determined by α, it follows that

$$
L(\theta_0 \mid x_1, x_2, \ldots, x_n) \leq cL(\theta_1 \mid x_1, x_2, \ldots, x_n)$$
for all \((x_1, x_2, \ldots, x_n) \in R\). Consequently,

\[
\int_R L(\theta_0 \mid x_1, x_2, \ldots, x_n) \leq \int_R cL(\theta_1 \mid x_1, x_2, \ldots, x_n)
\]

from which the result follows in view of parts (a) and (b) of this problem. □