Solutions to Assignment #13

1. Consider a test of the simple hypotheses

\[H_0 : \theta = \theta_0 \quad \text{versus} \quad H_1 : \theta = \theta_1 \]

based on a random sample from a distribution with pmf \(f(x \mid \theta) \), for \(x = 1, 2, \ldots, 7 \). The values of the likelihood function at \(\theta_0 \) and \(\theta_1 \) are given in the table below.

<table>
<thead>
<tr>
<th>(x)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L(\theta_0))</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>(L(\theta_1))</td>
<td>0.06</td>
<td>0.05</td>
<td>0.04</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
<td>0.79</td>
</tr>
</tbody>
</table>

Use the Neyman–Pearson Lemma to find the most powerful test for \(H_0 \) versus \(H_1 \) with significance level \(\alpha = 0.04 \). Compute the probability of Type II error for this test.

Solution: Table 1 shows the values of the likelihood ratio statistic in the third row. Observe that if we let \(c = 1/3 \) and \(R \) the region defined by \(\Lambda \leq c \), then

\[\alpha = P(\Lambda \leq 1/3 \mid \theta = \theta_0) = 0.04. \]

Thus, by the Neyman–Pearson Lemma, the test that rejects \(H_0 \) if

<table>
<thead>
<tr>
<th>(x)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L(\theta_0))</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>(L(\theta_1))</td>
<td>0.06</td>
<td>0.05</td>
<td>0.04</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
<td>0.79</td>
</tr>
<tr>
<td>(L(\theta_0)/L(\theta_1))</td>
<td>1/6</td>
<td>1/5</td>
<td>1/4</td>
<td>1/3</td>
<td>1/2</td>
<td>1</td>
<td>1.19</td>
</tr>
</tbody>
</table>

Table 1: Likelihood ratios

\[\frac{L(\theta_0)}{L(\theta_1)} \leq \frac{1}{3} \]

is the most powerful test at significance level \(\alpha = 0.04 \).

The power of the test is

\[\gamma(\theta_1) = P(\Lambda \leq 1/3 \mid \theta = \theta_1) = 0.18. \]

Thus, the probability of a Type II error is \(1 - \gamma(\theta_1) = 82\% \).
2. Let X_1, X_2, \ldots, X_n be a random sample from a Poisson(λ) distribution.

(a) Find the most powerful test for testing

$$H_0: \lambda = \lambda_o \quad \text{versus} \quad H_1: \lambda = \lambda_1,$$

for $\lambda_1 > \lambda_o$.

Solution: According to the Neyman–Pearson Lemma, the most powerful test is the LRT. To find the LRT rejection region, we first compute the likelihood ratio statistic

$$\Lambda(x_1, x_2, \ldots, x_n) = \frac{L(\lambda_o | x_1, x_2, \ldots, x_n)}{L(\lambda_1 | x_1, x_2, \ldots, x_n)},$$

where

$$L(\lambda | x_1, x_2, \ldots, x_n) = \frac{\lambda^y}{x_1!x_2!\cdots x_n!} e^{-n\lambda}, \quad (1)$$

for $y = \sum_{i=1}^{n} x_i$.

We then have that

$$\Lambda(x_1, x_2, \ldots, x_n) = \frac{\lambda_o^y e^{-n\lambda_o}}{\lambda_1^y e^{-n\lambda_1}} = \frac{e^{n\lambda_1}}{e^{n\lambda_o}} \left(\frac{\lambda_o}{\lambda_1} \right)^y = a^n r^y,$$

where we have set $a = e^{\lambda_1} / e^{\lambda_o}$ and $r = \lambda_o / \lambda_1$.

Since, $\lambda_1 > \lambda_o$, $a > 1$ and $r < 1$.

The rejection region of the LRT is

$$R: \quad \Lambda(x_1, x_2, \ldots, x_n) \leq c,$$

for some $c \in (0, 1)$ determined by the significance level of the test, or

$$a^n r^y \leq c, \quad (2)$$

where $y = \sum_{i=1}^{n} x_i$.

Taking the natural logarithm on both sides of the inequality in (2), we obtain

$$n \ln a + y \ln r \leq \ln c,$$

from which we get that

$$y \geq \frac{\ln c - n \ln a}{\ln r} \equiv b > 0.$$
Thus, the LRT rejects H_0 if

$$Y \geq b,$$

for some $b > 0$, where $Y = \sum_{i=1}^{n} X_i$. □

(b) Show that the test found in part (a) is uniformly most powerful for testing

$$H_o: \lambda = \lambda_o \text{ versus } H_1: \lambda > \lambda_o.$$

Solution: Fix b in (3) so that $P(Y_0 > b) = \alpha$, where $Y_0 \sim \text{Poisson}(n\lambda_o)$. Note that this value of b depends only on α and λ_o. Furthermore, by the result of part (a), the test that reject $H_o: \lambda = \lambda_o$ versus $H_o: \lambda = \lambda_1$, if

$$Y \geq b,$$

is the most powerful test at level α for every $\lambda_1 > \lambda_o$. It then follows that the test that rejects H_o if

$$Y \geq b,$$

is the uniformly most powerful test of H_o versus $H_1: \lambda > \lambda_o$. □

3. Given a random sample, X_1, X_2, \ldots, X_n, from a distribution with distribution function $f(x \mid \theta)$. We say that a statistic $T = T(X_1, X_2, \ldots, X_n)$ is **sufficient** for θ is the joint distribution $f(x_1, x_2, \ldots, x_n \mid \theta)$ can be written in the form

$$f(x_1, x_2, \ldots, x_n \mid \theta) = g(T, \theta)h(x_1, x_2, \ldots, x_n),$$

for some functions $g: \mathbb{R}^2 \to \mathbb{R}$ and $h: \mathbb{R}^n \to \mathbb{R}$.

Let X_1, X_2, \ldots, X_n be a random sample from a $\text{Poisson}(\lambda)$ distribution. Find a sufficient statistic for λ. Justify your answer based on the definition given above.

Solution: According to (1) in the solution to part (a) of Problem 2 in this assignment, the likelihood function in this case is

$$L(\lambda \mid x_1, x_2, \ldots, x_n) = g(y, \lambda)h(x_1, x_2, \ldots, x_n),$$

where

$$g(y, \lambda) = \lambda^y e^{-\lambda}.$$
\[h(x_1, x_2, \ldots, x_n) = \frac{1}{x_1!x_2! \cdots x_n!}, \]

and

\[y = \sum_{i=1}^{n} x_i. \]

It then follows that \(Y = \sum_{i=1}^{n} X_i \) is a sufficient statistic for \(\lambda \). Observe that \(\bar{X}_n = \frac{1}{n} Y \) is also a sufficient statistic for \(\lambda \). \(\square \)

4. Suppose that \(X_1, X_2, \ldots, X_n \) forms a random sample from distribution with distribution function \(f(x \mid \theta) \).

(a) Show that if \(T \) is a sufficient statistic for \(\theta \), then the likelihood ratio statistic for the test of

\[H_0: \theta = \theta_0 \quad \text{versus} \quad H_1: \theta = \theta_1 \]

is a function of \(T \).

\textbf{Solution:} In this case, the likelihood function is

\[L(\theta \mid x_1, x_2, \ldots, x_n) = g(T, \theta)h(x_1, x_2, \ldots, x_n) \]

for all possible values of the parameter \(\theta \). It then follows that the likelihood ratio statistic is

\[\Lambda(x_1, x_2, \ldots, x_n) = \frac{g(T, \theta_0)}{g(T, \theta_1)}, \]

which is a function of \(T \). \(\square \)

(b) Explain how knowledge of the distribution of \(T \) under \(H_0 \) may be used to choose a rejection region that yields the most powerful test at level \(\alpha \).

\textbf{Solution:} Knowing the distribution of \(T \), assuming that the null hypothesis is true, it is possible to find a value, \(c_\alpha \), for \(c \), such that

\[P \left(\frac{g(T, \theta_0)}{g(T, \theta_1)} \leq c_\alpha \right) = \alpha. \]

The LRT rejection region is then given by

\[R: \quad g(T, \theta_0) \leq c_\alpha g(T, \theta_1); \]

that is, if the value of \(T \) given by the sample falls in the region \(R \), the null hypothesis is rejected. \(\square \)
5. Derive a likelihood ratio test for

\[H_0 : \sigma^2 = \sigma_o^2 \quad \text{versus} \quad H_1 : \sigma^2 \neq \sigma_o^2 \]

based on a sample from a normal(\(\mu, \sigma^2\)) distribution.

Solution: The likelihood ratio statistic is

\[\Lambda(x_1, x_2, \ldots, x_n) = \sup_{\mu \in \mathbb{R}} \frac{L(\mu, \sigma_o | x_1, x_2, \ldots, x_n)}{L(\hat{\mu}, \hat{\sigma} | x_1, x_2, \ldots, x_n)}, \quad (4) \]

where \(\hat{\mu}\) and \(\hat{\sigma}^2\) are the MLEs for \(\mu\) and \(\sigma^2\), respectively; That is,

\[\hat{\mu} = \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i, \]

and

\[\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2. \]

When we maximize \(L(\mu, \sigma_o | x_1, x_2, \ldots, x_n)\) over \(\mu \in \mathbb{R}\) we obtain that \(\mu = \bar{x}\). It then follows from (4) that

\[\Lambda(x_1, x_2, \ldots, x_n) = \frac{L(\hat{\mu}, \sigma_o | x_1, x_2, \ldots, x_n)}{L(\hat{\mu}, \hat{\sigma} | x_1, x_2, \ldots, x_n)}, \quad (5) \]

where

\[L(\mu, \sigma | x_1, x_2, \ldots, x_n) = \frac{1}{(2\pi)^{n/2} \sigma^n e^{-\sum_{i=1}^{n}(x_i-\mu)^2/2\sigma^2}}, \]

for \(\mu \in \mathbb{R}\) and \(\sigma > 0\). We then have from (5) that

\[\Lambda(x_1, x_2, \ldots, x_n) = \left(\frac{\hat{\sigma}}{\sigma_o} \right)^n \frac{e^{-\sum_{i=1}^{n}(x_i-\bar{x})^2/2\hat{\sigma}^2}}{e^{-\sum_{i=1}^{n}(x_i-\bar{x})^2/2\sigma_o^2}} \]

\[= \left(\frac{\hat{\sigma}}{\sigma_o} \right)^n \frac{e^{-n\hat{\sigma}^2/2\sigma_o^2}}{e^{-n/2}} \]

\[= e^{n/2} \frac{\hat{\sigma}^2}{\sigma_o^2} \]

where we have set \(t = \frac{\hat{\sigma}^2}{\sigma_o^2} \).
We then have that
\[\Lambda(x_1, x_2, \ldots, x_n) = g(T) \]
where \(T \) is the statistic
\[T = \frac{1}{n\sigma^2} \sum_{i=1}^{n} (X_i - \overline{X})^2, \tag{6} \]
and \(g(t) = e^{n/2} t^{n/2} e^{-nt/2} \). Observe that \(nT \) has a \(\chi^2(n - 1) \) distribution when the null hypothesis is true. Observe also that \(g(t) \) has a graph like the one sketched in Figure 1. It then follows that for any \(c \in (0, 1) \), there exists \(t_1 \) and \(t_2 \) such that \(0 < t_1 < 1 < t_2 \) and
\[g(t_1) = g(t_2) = c. \]
Furthermore,
\[g(t) \leq c \quad \text{for} \quad t \leq t_1 \text{ or } t \geq t_2. \]
We then have that the LRT rejection region,

\[R: \Lambda(x_1, x_2, \ldots, x_n) \leq c, \]

can be expressed in terms of the statistic \(T \) in (6) as

\[R: \quad T \leq t_1 \text{ or } T \geq t_2. \]

The LRT rejection region can also be expressed in terms of the sample variance, \(S_n^2 \), as follows

\[R: \quad S_n^2 \leq \frac{n-1}{n} t_1 \sigma_o^2 \text{ or } S_n^2 \geq \frac{n-1}{n} t_2 \sigma_o^2. \]

for \(0 < t_1 < 1 < t_2 \), or, equivalently,

\[R: \quad S_n^2 \leq \sigma_o^2 - b_1 \text{ or } S_n^2 \geq \sigma_o^2 + b_2, \]

for some positive values of \(b_1 \) and \(b_2 \) determined by the significance level of the test. \(\square \)