Solutions to Assignment #6

1. Let X_1, X_2, \ldots, X_n denote a random sample from a normal(μ, σ^2) distribution, where μ and σ^2 are unknown. Suppose that $n = 17$ and that the values of X_1, X_2, \ldots, X_n add up to 79.90 and that the sum of the square difference from the values to the sample mean is 92.16. Give a 90% confidence interval for μ.

Solution: The sample mean for the data is $\bar{X}_n = 4.7$ and the sample variance is $S_n^2 = 5.76$, so that $S_n = 2.4$. Thus, a 90% confidence interval for μ is given by

$$
\left(4.7 - t_{\alpha/2} \frac{2.4}{\sqrt{17}}, 4.7 + t_{\alpha/2} \frac{2.4}{\sqrt{17}}\right),
$$

where $\alpha = 0.1$ in this case. Thus, using MS Excel, R or looking up values in a table we obtain that $t_{\alpha/2} \approx 1.75$, where we have used the fact that the number of degrees of freedom is 16 in this case. Thus, a 90% confidence interval for the mean is $(4.7 - 1.02, 4.7 + 1.02)$, or $(3.68, 5.72)$. \(\square\)

2. Let X_1, X_2, \ldots, X_n denote a random sample from a normal(μ, σ^2) distribution, and let S_n^2 denote the sample variance. Since S_n^2 is an unbiased estimator for σ^2, $E(S_n^2) = \sigma^2$. Compute $\text{var}(S_n^2)$; that is, compute the variance of the sampling distribution of S_n^2.

Suggestion: Use the knowledge that you have about the distribution of $\frac{(n-1)S_n^2}{\sigma^2}$.

Solution: Using the fact that the variance of a $\chi^2(n-1)$ distribution is $2(n-1)$ we obtain that

$$\text{var} \left(\frac{(n-1)S_n^2}{\sigma^2} \right) = 2(n-1),$$

since

$$\frac{(n-1)}{\sigma^2} S_n^2 \sim \chi^2(n-1).$$

It then follows that

$$\frac{(n-1)^2}{\sigma^4} \text{var}(S_n^2) = 2(n-1),$$
from which we get that
\[\text{var}(S_n^2) = \frac{2\sigma^4}{n-1}. \]

\[\square \]

3. Let \(X_1, X_2, \ldots, X_n \) be a random sample from a distribution with finite variance, \(\sigma^2 \). Show that
\[E(S_n) \leq \sigma, \]
where \(S_n \) denotes the positive square root of the sample variance. Furthermore, prove that \(E(S_n) < \sigma \) if \(\text{var}(S_n) \neq 0 \).

Solution: Observe that
\[
0 \leq \text{var}(S_n) = E(S_n^2) - [E(S_n)]^2 = \sigma^2 - [E(S_n)]^2.
\]
It then follows that
\[
[E(S_n)]^2 \leq \sigma^2,
\]
from which the result follows. Note that if \(\text{var}(S_n) \neq 0 \), we get strict inequality.

\[\square \]

4. Suppose we are sampling from a Bernoulli(\(p \)) distribution. Approximately, what should the sample size, \(n \), be so that a 90% confidence interval for the parameter \(p \) has length at most 0.02.

Solution: An approximate 90% confidence interval for \(p \), based on the Central Limit Theorem, is based on the approximation
\[
P\left(|\hat{p}_n - p| < z_{\alpha/2} \frac{\sqrt{p(1-p)}}{\sqrt{n}} \right) \approx P(|Z| < z_{\alpha/2}) = 0.90
\]
for large values of \(n \). We then have that \(z_{\alpha/2} \approx 1.65 \). Observe that \(p(1-p) \) is at most 1/4. Consequently, the length of the interval is at most
\[
2 \frac{z_{\alpha/2}}{2\sqrt{n}} = z_{\alpha/2} \frac{1}{\sqrt{n}}.
\]
We want this length to be at most 0.02. Therefore

\[z_{\alpha/2} \frac{1}{\sqrt{n}} < 0.02, \]

from which we get that

\[\frac{\sqrt{n}}{z_{\alpha/2}} > 50, \]

or

\[n > (50z_{\alpha/2})^2. \]

Hence, \(n \) should be at least 6,807.

5. Suppose we are sampling from a Poisson(\(\lambda \)) distribution. A sample of 200 observations from this distribution has mean equal to 3.4. Construct and approximate 90% confidence interval for \(\lambda \).

Solution: We may use the result obtained in Problem 5 of Assignment #5:

\[
\left(\left(\sqrt{\frac{Y}{n}} - \frac{z_{\alpha/2}}{2\sqrt{n}} \right)^2, \left(\sqrt{\frac{Y}{n}} + \frac{z_{\alpha/2}}{2\sqrt{n}} \right)^2 \right)
\]

where \(Y/n \) is the sample mean, which in this case is 3.4 and \(z_{\alpha/2} \) is 1.65. This yields an approximate 90% confidence interval for \(\lambda \) to be (3.2, 3.6).