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Solutions to Review Problems for Final Exam

1. Let W be a subspace of Rn. Prove that span(W ) = W .

Proof: Assume that W is a subspace of Rn. Then, since span(W ) is the smallest
subspace of Rn that contains W , it follows that

W ⊆ span(W ) (1)

and
span(W ) ⊆ W. (2)

The inclusion in (2) follows from the fact that W ⊆ W and the assumption that
W is a subspace. Combining (1) and (2) yields the equality

span(W ) = W.

2. Let S be linearly independent subset of Rn. Suppose that v 6∈ span(S). Show
that the set S ∪ {v} is linearly independent.

Proof: Assume that S is linearly independent subset of Rn and that v is a vector
in Rn with

v 6∈ span(S). (3)

Assume that c1, c2, . . . , ck and c solve the equation

c1v1 + c2v2 + · · ·+ ckvk + cv = 0, (4)

where v1, v2, . . . , vk ∈ S.

We first see that c = 0 in (4); otherwise we can solve for v in (4) to obtain

v = −c1
c
v1 −

c2
c
v2 − · · · −

ck
c
vk,

which shows that v ∈ span(S), and this is in direct contradiction with (3).
Hence,

c = 0 (5)

and, substituting into (4),

c1v1 + c2v2 + · · ·+ ckvk = 0. (6)
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Next, since the vectors v1, v2, . . . , vk are in S and S is linearly independent, it
follows from (6) that

c1 = c2 = · · · = ck = 0. (7)

Combining (5) and (6) we see that (4) implies that

c1 = c2 = · · · = ck = c = 0;

hence, S ∪ {v} is linearly independent.

3. Let W be a subspace of Rn with dimension k < n. Let {w1, w2, . . . , wk} be a
basis for W . Prove that there exist vectors v1, v2, . . . , vn−k in Rn such that the
set {w1, w2, . . . , wk, v1, v2, . . . , vn−k} is a basis for Rn.

Proof: Assume that W is a subspace of Rn with basis {w1, w2, . . . , wk}; so that
dim(W ) = k. Assume also that k < n. Then, there exists v1 ∈ Rn such that
v1 6∈ span({w1, w2, . . . , wk}); otherwise, {w1, w2, . . . , wk} would span Rn and it
would therefore be a basis for Rn, since it is also linearly independent; but this
is impossible because k < n. It therefore follows from Problem 2 above that the
set {w1, w2, . . . , wk, v1} is linearly independent.

If {w1, w2, . . . , wk, v1} spans Rn, it would be basis for Rn, so that k+ 1 = n and
the proof of the statement is done. On the other hand, if span({w1, w2, . . . , wk, v1}) 6=
Rn, there exists v2 ∈ Rn such that

v2 6∈ span({w1, w2, . . . , wk, v1}).

Consequently, the set {w1, w2, . . . , wk, v1, v2} is linearly independent, by Prob-
lem 2 above. If span({w1, w2, . . . , wk, v1, v2}) = Rn we are done and k + 2 = n.
If not, there exists v3 ∈ Rn such that

v3 6∈ span({w1, w2, . . . , wk, v1, v2}).

Continuing in this fashion, we obtain a set of vectors v1, v2, . . . , v` in Rn such
that the set

{w1, w2, . . . , wk, v1, v2, . . . , v`}
is linearly independent and

span({w1, w2, . . . , wk, v1, v2, . . . , v`}) = Rn.

Hence, the set {w1, w2, . . . , wk, v1, v2, . . . , v`} is a basis for Rn; so that

k + ` = n,

from which we get that ` = n−k, and the proof of the assertion is now complete.
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4. Let A be an m × n matrix and b ∈ Rm. Prove that if Ax = b has a solution x
in Rn, then 〈b, v〉 = 0 for every v is the null space of AT .

Solution: Let x be a solution of Ax = b and v ∈ NAT . Then, ATv = 0 and

〈b, v〉 = 〈Ax, v〉

= (Ax)Tv

= xTATv

= xT0

= 0.

�

5. Let R =
(
2 −1 3

)
and C =

−1
1
−2

 .

Compute the products RC and CR.

Solution: Compute

RC =
(
2 −1 3

)−1
1
−2

 = −2− 1− 6 = −9,

and

CR =

−1
1
−2

(2 −1 3
)

=

−2 1 −3
2 −1 3
−4 2 −6

 .

�

6. Let A ∈ M(m,n) and write A =


R1

R2
...
Rm

 , where R1, R2, . . . , Rm denote the

rows of A. Define R⊥A to be the set

R⊥A = {w ∈ Rn | Riw = 0 for all i = 1, 2, . . . ,m};

that is, R⊥A is the set of vectors in Rn which are orthogonal to the vectors
RT

1 , R
T
2 , . . . , R

T
m in Rn.
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(a) Prove that R⊥A is a subspace of Rn.

Solution: First, observe that Ri0 = 0 for all i = 1, 2, . . . ,m, so that
0 ∈ R⊥A and so R⊥A 6= ∅.
Next, let w1 and w2 be vectors in R⊥A. Then,

Riw1 = 0 for all i = 1, 2, . . . ,m; (8)

and
Riw2 = 0 for all i = 1, 2, . . . ,m. (9)

Thus, adding the equations in (8) and (9), and using the distributive prop-
erty of matrix multiplication, we get

Ri(w1 + w2) = 0 for all i = 1, 2, . . . ,m,

which shows that w1+w2 ∈ R⊥A. Hence,R⊥A is closed under vector addition.

Next, let w ∈ R⊥A and c be a scalar. Then,

Riw = 0 for all i = 1, 2, . . . ,m. (10)

Thus, multiplying the equation in (10),

cRiw = 0 for all i = 1, 2, . . . ,m,

from which we get

Ri(cw) = 0 for all i = 1, 2, . . . ,m,

by the linearity of the Euclidean inner product. Hence, cw ∈ R⊥A, and we
have therefore shown that R⊥A is closed under scalar multiplication.

We have shown that R⊥A is nonempty and closed under vector addition and
scalar multiplication. Hence, R⊥A is subspace of Rn. �

(b) Prove that R⊥A = NA.

Proof: The following chain of equivalences is true:

w ∈ R⊥A iff Riw = 0 for all i = 1, 2, . . . ,m

iff


R1w
R2w

...
Rmv

 = 0

iff Aw = 0

iff w ∈ NA.
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Consequently, R⊥A = NA.

(c) Denote by RA the span of the rows of the matrix A. Let v denote a vector
in Rn. Prove that if v ∈ NA and vT ∈ RA, then v = 0.

Proof: Assume that v ∈ Rn is in NA and its transpose, vT , is in the row–
space of A, RA. By the result of part (b), v ∈ R⊥A; that is,

Riv = 0 for i = 1, 2, . . . ,m. (11)

Now, since vT ∈ RA, there exist scalars c1, c2, . . . , cm such that

vT = c1R1 + c2R2 + · · ·+ cmRm. (12)

Multiplying both sides of (12) on the right by v we obtain

vTv = (c1R1 + c2R2 + · · ·+ cmRm)v,

or
‖v‖2 = c1R1v + c2R2v + · · ·+ cmRmv, (13)

where we have used the distributive property of matrix multiplication.
Combining (11) and (13) we see that ‖v‖ = 0, from which we get that
v = 0.

7. Let B be an n×n matrix satisfying B3 = 0 and put A = I+B, where I denotes
the n×n identity matrix. Prove that A is invertible and compute A−1 in terms
of I, B and B2.

Solution: Set Q = c1I + c2B + c3B
2 and look for scalars c1, c2 and c3 such

that AQ = I.

Now,
AQ = (I +B)Q

= c1I + c2B + c3B
2 +B(c1I + c2B + c3B

2)

= c1I + c2B + c3B
2 + c1B + c2B

2 + c3B
3

= c1I + (c1 + c2)B + (c2 + c3)B
2,

where we have used the assumption that B3 = O. Thus, AQ = I if and only if
c1 = 1
c1 + c2 = 0
c2 + c3 = 0.
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Solving this system we get c1 = 1, c2 = −1 and c3 = 1. Hence, if Q = I−B+B2,
then Q is a right–inverse of A = I + B and therefore A = I + B is invertible
and A−1 = I −B +B2. �

8. Let A,B ∈M(2, 2). Show that det(AB) = det(BA).

Proof: Compute
det(AB) = det(A) det(B)

= det(B) det(A),

since multiplication of real numbers is commutative. Hence,

det(AB) = det(BA),

which was to be shown.

9. Let A,B ∈M(2, 2). Verify that det(AT ) = det(A).

Solution: Let A =

(
a b
c d

)
. Then, AT =

(
a c
b d

)
and, therefore,

det(AT ) = ad− bc = det(A),

which was to be shown. �

10. Given an n × n matrix A = [aij], the trace of A, denoted tr(A), is the sum of

the entries along the main diagonal of A; that is tr(A) =
n∑

i=1

aii.

Let A and B denote n× n matrices. Show that tr(AB) = tr(BA).

Proof: Write A = [aij] and B = [bjk] for i = 1, 2, . . . , n, j = 1, 2, . . . , n and
k = 1, 2, . . . , n. Then, AB = [cik], where

cik =
n∑

j=1

aijbjk. (14)

Consequently,

tr(AB) =
n∑

i=1

cii

=
n∑

i=1

n∑
j=1

aijbji,

(15)



Math 60. Rumbos Fall 2014 7

where we have used (14).

Interchanging the order of summation in (15) we obtain

tr(AB) =
n∑

j=1

n∑
i=1

aijbji

=
n∑

j=1

n∑
i=1

bjiaij

=
n∑

j=1

djj,

where

djj =
n∑

i=1

bjiaij, for j = 1, 2, . . . , n,

are the entries along the main diagonal of the matrix product BA. Hence, we
have shown that tr(AB) = tr(BA).

11. Let A and B be n×n matrices such that B = Q−1AQ for some invertible n×n
matrix Q.

Prove that A and B have the same determinant and the same trace.

Solution: Use the result of Problem 8 to compute

det(B) = det(Q−1AQ)

= det(QQ−1A)

= det(IA)

= det(A).

Similarly, using the result of Problem 10,

tr(B) = tr(Q−1AQ)

= tr(QQ−1A)

= tr(IA)

= tr(A).
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�

12. Let A =

(
1/2 1/3
1/2 2/3

)
.

(a) Find a basis B = {v1, v2} for R2 made up of eigenvectors of A.

Solution: First, we look for values of λ such that the system

(A− λI)v = 0 (16)

has nontrivial solutions in R2. This is the case if and only if

det(A− λI) = 0,

which occurs if and only if

λ2 − 7

6
λ+

1

6
= 0,

or

(λ− 1)

(
λ− 1

6

)
= 0.

We then get that

λ1 =
1

6
and λ2 = 1

are eigenvalues of A.

To find an eigenvector corresponding to the eigenvalue λ1, we solve the
system in (16) for λ = λ1. In this case, the system can be reduced to the
equation

x1 + x2 = 0,

which has solutions (
x1
x2

)
= t

(
1
−1

)
,

where t is arbitrary. We can therefore take

v1 =

(
1
−1

)

as an eigenvector corresponding to λ =
1

6
.

Similar calculations for λ = λ2 = 1 lead to the equation

3x1 − 2x2 = 0,
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which has solutions (
x1
x2

)
= t

(
2
3

)
,

where t is arbitrary. Thus, in this case, we obtain the eigenvector

v2 =

(
2
3

)
.

Since v1 and v2 are linearly independent, they constitute a basis for R2

because dim(R2) = 2. �

(b) Let Q be the 2 × 2 matrix Q = [ v1 v2 ], where {v1, v2} is the basis of
eigenvectors found in (a) above. Verify that Q is invertible and compute
Q−1AQ.

Solution: Q =

(
1 2
−1 3

)
, so that det(Q) = 3 + 2 = 5 6= 0. Hence Q is

invertible and

Q−1 =
1

5

(
3 −2
1 1

)
.

Next, compute

Q−1AQ =
1

5

(
3 −2
1 1

)(
1/2 1/3
1/2 2/3

)(
1 2
−1 3

)

=
1

5

(
3 −2
1 1

)(
1/6 2
−1/6 3

)

=
1

5

(
5/6 0
0 5

)

=

(
1/6 0
0 1

)

=

(
λ1 0
0 λ2

)
.

Thus, Q−1AQ is a diagonal matrix with the eigenvalues of A as entries
along the main diagonal. �

(c) Use the result in part (b) above to find a formula for for computing Ak for
every positive integer k. Can you say anything about lim

k→∞
Ak?
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Solution: Let D denote the matrix

(
λ1 0
0 λ2

)
. Then, from part (b) in

this problem,
Q−1AQ = D.

Multiplying this equation by Q on the left and Q−1 on the right, we obtain
that

A = QDQ−1.

It then follows that

A2 = (QDQ−1)(QDQ−1)

= QD(Q−1Q)DQ−1

= QDIDQ−1

= QD2Q−1.

We may now proceed by induction on k to show that

Ak = QDkQ−1 for all k = 1, 2, 3, . . .

In fact, once we have established that

Ak−1 = QDk−1Q−1,

we compute, using the associativity of the matrix product,

Ak = AAk−1

= (QDQ−1)(QDk−1Q−1)

= QD(Q−1Q)Dk−1Q−1

= QDIDk−1Q−1

= QDkQ−1.
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Thus, we may compute Ak as follows

Ak = QDkQ−1

=

(
1 2
−1 3

)(
λ1 0
0 λ2

)k
1

5

(
3 −2
1 1

)

=
1

5

(
1 2
−1 3

)(
λk1 0
0 λk2

)(
3 −2
1 1

)
.

Substituting for the values of λ1 and λ2 we then get that

Ak =
1

5

(
1 2
−1 3

)(
1/6k 0

0 1

)(
3 −2
1 1

)
,

from which we get that

Ak =
1

5

(
(3/6k) + 2 −(2/6k) + 2
−(3/6k) + 3 (2/6k) + 3

)
, for all k.

Observe that, as k →∞,

Ak →
(

2/5 2/5
3/5 3/5

)
.

�

13. Let T : Rn → Rm be a linear transformation. Let S = {v1, v2, . . . , vk} be a set
of vectors in Rn.

(a) Suppose that the set of vectors {T (v1), T (v2), . . . , T (vk)} is a linearly in-
dependent set of vectors in Rm. Prove that the set S must be a linearly
independent set in Rn.

Solution: Assume that {T (v1), T (v2), . . . , T (vk)} is linearly independent
and consider the equation

c1v1 + c2v2 + · · ·+ ckvk = 0. (17)

Apply the function T to both sides of (17) to get

T (c1v1 + c2v2 + · · ·+ ckvk) = T (0),

or
c1T (v1) + c2T (v2) + · · ·+ ckT (vk) = 0, (18)
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where we have used the linearity of T .

It follows from (18) and the assumption that {T (v1), T (v2), . . . , T (vk)} is
linearly independent that

c1 = c2 = · · · = ck = 0.

Hence, the only solution of the equation in (17) is the trivial solution;
consequently, the set {v1, v2, . . . , vk} is linearly independent. �

(b) Is the converse of the statement in part (a) true? If not, produce a counter–
example to show that the converse is generally false.

Solution: It is not true in general that the image, {T (v1), T (v2), . . . , T (vk)},
of a linearly independent set {v1, v2, . . . , vk} in Rn under a linear T : Rn →
Rm is linearly independent. To see why this is the case, consider the linear
transformation T : R2 → R2 given by

T

(
x
y

)
=

(
x
0

)
, for all

(
x
y

)
∈ R2.

Observe that the linearly independent set {e1, e2}, the standard basis in
R2, gets mapped to the set

{T (e1), T (e2)} = {e1,0},

which is linearly dependent, since the zero vector is in the set. �

14. Let T : Rn → Rm denote a linear transformation. Let W denote the null space,
NT , of T . Assume that W has dimension k < n. Let {w1, w2, . . . , wk} be a basis
for W and {w1, w2, . . . , wk, v1, v2, . . . , vn−k} be a basis for Rn. Prove that that
the set {T (v1), T (v2), . . . , T (vn−k)} is a basis for IT , the image of T . Deduce
that

dim(NT ) + dim(IT ) = n.

Solution: Assume that T : Rn → Rm is a linear transformation. Let W = NT ,
null space, and assume that dim(W ) = k < n. Let {w1, w2, . . . , wk} be a basis
for W and {w1, w2, . . . , wk, v1, v2, . . . , vn−k} be a basis for Rn. We show that the
set

{T (v1), T (v2), . . . , T (vn−k)}

is a basis for the image of T , IT .

We first show that {T (v1), T (v2), . . . , T (vn−k)} spans IT . Let y ∈ IT ; then,

y = T (x), for some x ∈ Rn. (19)



Math 60. Rumbos Fall 2014 13

Since {w1, w2, . . . , wk, v1, v2, . . . , vn−k} be a basis for Rn, there exists scalars
d1, d2, . . . , dk, c1, c2, . . . , cn−k such that

x = d1w1 + d2w2 + · · ·+ dkwk + c1v1 + · · ·+ cn−kvn−k. (20)

It follows from (19), (20) and the assumption that T is linear that

y = d1T (w1) + d2T (w2) + · · ·+ dkT (wk) + c1T (v1) + · · ·+ cn−kT (vn−k). (21)

Next, use the fact that w1, w2, . . . , wk are in the null space of T to obtain from
(21) that

y = c1T (v1) + · · ·+ cn−kT (vn−k),

which shows that y ∈ span({T (v1), T (v2), . . . , T (vn−k)}). We have therefore
shown that

IT ⊆ span({T (v1), T (v2), . . . , T (vn−k)}). (22)

In order to show the reverse inclusion to that in (22), let

y ∈ span({T (v1), T (v2), . . . , T (vn−k)});

then,
y = c1T (v1) + c2T (v2) + · · ·+ cn−kT (vn−k), (23)

for some scalars c1, c2, . . . , cn−k. Next, use the assumption that T is linear to
get from (23) that

y = T (c1v1 + c2v2 + · · ·+ cn−kvn−k),

which shows that y ∈ IT . Thus,

span({T (v1), T (v2), . . . , T (vn−k)}) ⊆ IT . (24)

Combining (22) and (24) yields

IT = span({T (v1), T (v2), . . . , T (vn−k)}).

Hence, {T (v1), T (v2), . . . , T (vn−k)} spans IT .

Next, we shoe that {T (v1), T (v2), . . . , T (vn−k)} is linearly independent. To see
why this is so, let c1, c2, . . . , cn−k be scalars such that

c1T (v1) + c2T (v2) + · · ·+ cn−kT (vn−k) = 0. (25)

Using the assumption that T is linear, we can rewrite (25) as

T (c1v1 + c2v2 + · · ·+ cn−kvn−k) = 0,
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which shows that c1v1+c2v2+· · ·+cn−kvn−k ∈ NT . Thus, since {w1, w2, . . . , wk}
is a basis for NT ,

c1v1 + c2v2 + · · ·+ cn−kvn−k = d1w2 + d2wk + · · ·+ dkwk, (26)

for some scalars d1, d2, . . . , dk. We can rewrite (26) as

(−d1)w2 + (−d2)wk + · · ·+ (−dk)wk + c1v1 + c2v2 + · · ·+ cn−kvn−k = 0, (27)

so that, since {w1, w2, . . . , wk, v1, v2, . . . , vn−k} is a basis for Rn, it follows from
(27) that

−d1 = −d2 = · · · = −dk = c1 = c2 = · · · = cn−k = 0. (28)

In particular, we get from (28) that

c1 = c2 = · · · = cn−k = 0. (29)

We have shown that (25) implies (29); thus, the set {T (v1), T (v2), . . . , T (vn−k)}
is linearly independent.

Hence {T (v1), T (v2), . . . , T (vn−k)} is is a basis for IT , so that

dim(IT ) = n− k = n− dim(NT ),

from which we get
dim(NT ) + dim(IT ) = n,

which was to be shown. �

15. Let T : Rn → Rn denote a linear transformation. Prove that if λ is an eigenvalue
of T , then λk is an eigenvalue of T k for every positive integer k. If µ is an
eigenvalue of T k, is µ1/k always and eigenvalue of T?

Solution: Let λ be an eigenvalue of T : Rn → Rn. Then, there exists a nonzero
vector, v, in Rn such that

T (v) = λv.

Applying the transformation, T , on both sides and using the fact that T is
linear and that v is an eigenvector corresponding to λ, we obtain that

T 2(v) = T (λv) = λT (v) = λλv = λ2v,

so that, since v 6= 0, λ2 is an eigenvalue for T 2.



Math 60. Rumbos Fall 2014 15

We may now proceed by induction on k to show that

λk, for all k = 1, 2, 3, . . . ,

is an eigenvalue of T k. To do this, assume we have established that λk−1 is
an eigenvalue of T k−1 and that v is an eigenvector for T corresponding to the
eigenvalue λ, so that v is also an eigenvector of T k−1 corresponding to λk−1. We
then have that

T k−1(v) = λk−1v.

Thus, applying the transformation, T , on both sides and using the fact that T
is linear and that v is an eigenvector corresponding to λ, we obtain that

T k(v) = T (T k−1v) = T (λk−1v) = λk−1T (v) = λk−1λv = λkv,

so that, since v 6= 0, λk is an eigenvalue for T k.

Next, consider the function T : R2 → R2 given by rotation in the counterclock-
wise sense by 90◦ or π/2 radians; that is,

T

(
x
y

)
=

(
0 −1
1 0

)(
x
y

)
for all

(
x
y

)
∈ R2.

Then, T 2 : R2 → R2 is given by

T 2

(
x
y

)
=

(
−1 0

0 −1

)(
x
y

)
for all

(
x
y

)
∈ R2,

which has µ = −1 as the only eigenvalue. Observe that T has no real eigenval-
ues, so µ1/2 cannot be a (real) eigenvalue of T . �

16. Let E = {e1, e2} denote the standard basis in R2, and let f : R2 → R2 be a
linear function satisfying: f(e1) = e1 + e2 and f(e2) = 2e1 − e2.
Give the matrix representations for f and f ◦ f relative to E .

Solution: Observe that

f(e1) =

(
1
1

)
and f(e2) =

(
2
−1

)
.

It then follows that the matrix representation for f relative to E is

Mf =

(
1 2
1 −1

)
.
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The matrix representation of f ◦ f is the product MfMf , or

Mf◦f =

(
1 2
1 −1

)(
1 2
1 −1

)
=

(
3 0
0 3

)
.

�

17. A function f : R2 → R2 is defined as follows: Each vector v ∈ R2 is reflected
across the y–axis, and then doubled in length to yield f(v).

Verify that f is linear and determine the matrix representation, Mf , for f
relative to the standard basis in R2.

Solution: The function f is the composition of the reflection R : R2 → R2

given by

R

(
x
y

)
=

(
−1 0

0 1

)(
x
y

)
, for all

(
x
y

)
∈ R2,

and the function T : R2 → R2 given by T (w) = 2w for all w ∈ R2 or, in matrix
form,

T

(
x
y

)
=

(
2 0
0 2

)(
x
y

)
, for all

(
x
y

)
∈ R2.

Note that both R and T are linear since they are both defined in terms of
multiplication by a matrix. It then follows that f = T ◦ R is linear and its
matrix representation, Mf , relative to the standard basis in R2 is

Mf = MTMR =

(
2 0
0 2

)(
−1 0

0 1

)
=

(
−2 0

0 2

)
�

18. Find a 2× 2 matrix A such that the function T : R2 → R2 given by T (v) = Av
maps the coordinates of any vector, relative to the standard basis in R2, to its

coordinates relative the basis B =

{(
1
1

)
,

(
1
−1

)}
.

Solution: Denote the vectors in B by v1 and v2, respectively, so that

v1 =

(
1
1

)
and v2 =

(
1
−1

)
.

We want the function T to satisfy

T (v) = [v]B (30)
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for every v ∈ R2 given in terms of the standard basis in R2.

We can attain (30) by means of the change of basis matrix [id]BE , where

E = {e1, e2}

is the standard basis in R2. Indeed, using the expression

[id(v)]B = [id]BE [v]E ,

we obtain
[v]B = [id]BE v. (31)

The matrix [id]BE in (31) is the inverse of the matrix [id]EB given by

[id]EB =
[
v1 v2

]
=

(
1 1
1 −1

)
.

We therefore have that

[id]BE =
1

−2

(
−1 −1
−1 1

)
=

(
1/2 1/2
1/2 −1/2

)
. (32)

Combining (30), (31) and (32) we get

T (v) = Av

where A is the matrix

A =

(
1/2 1/2
1/2 −1/2

)
.

�

19. Let u1 and u2 denote a unit vector in R3 that are orthogonal to each other; i.e.,
〈u1, u2〉 = 0, where 〈·, ·〉 denotes the Euclidean inner product in R3.

Define f : R3 → R3 by f(v) = 〈v, u1〉u1 + 〈v, u2〉u2 for all v ∈ R3.

(a) Use the Dimension Theorem to compute dim(Nf ).

Solution: We first note that

If = span({u1, u2}). (33)

To see why the assertion in (33) is true, let w ∈ If ; so that,

w = f(v) = 〈v, u1〉u1 + 〈v, u2〉u2,
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for some v ∈ R3; thus, w is a linear combination of u1 and u2. We have
therefore shown that

If ⊆ span({u1, u2}). (34)

In order to show the other inclusion, note that

f(u1) = 〈u1, u1〉u1 + 〈u1, u2〉u2 = u1,

since 〈u1, u2〉 = 0 and u1 is a unit vector. Thus, u1 = f(u1); so that
u1 ∈ If . Similarly, u2 ∈ If . We then have that

{u1, u2} ⊆ If ,

from which we get that

span({u1, u2}) ⊆ If , (35)

since If is a subspace of R3 and span({u1, u2}) is the smallest subspace of
R3 that contains {u1, u2}. Combining (34) and (35) yields (33).

Next, we show that {u1, u2} is linearly independent. Consider the equation

c1u1 + c2u2 = 0. (36)

Take the inner product with u1 on both sides of (36) to get

〈c1u1 + c2u2, u1〉 = 〈0, u1〉,

or, using the bi–linearity of the inner product,

c1〈u1, u1〉+ c2〈u2, u1〉 = 0; (37)

thus, since 〈u1, u2〉 = 0 and u1 is a unit vector, it follows from (37) that
c1 = 0. Similarly, c2 = 0. We therefore get that the equation in (36) has
only the trivial solution. Therefore, the set {u1, u2} is linearly independent.
Hence, in view of (33), {u1, u2} is a basis for If .

It then follows that dim(If ) = 2. Hence, by the Dimension Theorem for
Linear Transformations,

dim(Nf ) + dim(If ) = 3,

we obtain that
dim(Nf ) = 1.

�
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(b) Show that v − f(v) is orthogonal to every vector w in the image of f .

Solution: In view of (33) in part (a) of this problem, it suffices to show
that

〈v − f(v), u1〉 = 0 and 〈v − f(v), u2〉 = 0. (38)

Indeed, assume that (38) has been established. Take w ∈ If ; then,

w = c1u1 + c2u2,

for some scalars c1 and c2, by virtue of (33). Then,

〈v − f(v), w〉 = 〈v − f(v), c1u1 + c2u2〉

= c1〈v − f(v), u1〉+ c2〈v − f(v), u2〉,

by the bi–linearity of the Euclidean inner product; so that, using (38),

〈v − f(v), w〉 = 0, for all w ∈ If .

In order to prove the claims in (38), compute

〈v − f(v), u1〉 = 〈v, u1〉 − 〈f(v), u1〉

= 〈v, u1〉 − 〈〈v, u1〉u1 + 〈v, u2〉u2, u1〉

= 〈v, u1〉 − 〈v, u1〉〈u1, u1〉+ 〈v, u2〉〈u2, u1〉,

where we have used the bi–linearity of the Euclidean inner product. Thus,
since 〈u1, u2〉 = 0 and u1 is a unit vector,

〈v − f(v), u1〉 = 〈v, u1〉 − 〈v, u1〉 = 0.

Similarly,
〈v − f(v), u2〉 = 〈v, u2〉 − 〈v, u2〉 = 0.

�

(c) Show that f(v) gives the point in the plane spanned by u1 and u2 that is
the closest to v in R3.

Solution: Let v ∈ R3 be given. Any point in span({u1, u2}) is of the form
xu1 + yu2, where x and y are scalars. Define a function of two variables

g(x, y) = ‖v − xu1 − yu2‖2, for x ∈ R and y ∈ R. (39)
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Thus, g(x, y) in (39) gives the square of the distance from v to a point
in the plane span({u1, u2}) with coordinates x and y relative to the basis
B = span({u1, u2}) for the plane. We would like to find the coordinates
of the point in the plane spanned by u1 and u2 for which g(x, y) is the
smallest possible.

Use the definition of the Euclidean norm and the properties of the Eu-
clidean inner product to rewrite (39) as follows:

g(x, y) = 〈v − xu1 − yu2, v − xu1 − yu2〉

= 〈v, v〉 − x〈v, u1〉 − y〈v, u2〉
−x〈u1, v〉+ x2〈u1, u1〉+ xy〈u1, u2〉
−y〈u2, v〉+ xy〈u2, u1〉y2〈u2, u2〉;

so that, using the assumptions that u1 and u2 are unit vectors, and 〈u1, u2〉 =
0,

g(x, y) = x2 + y2 − 2x〈v, u1〉 − 2y〈v, u2〉+ ‖v‖2, (40)

for x ∈ R and y ∈ R.

Completing the squares in x and in y for the expression for g(x, y) in (40)
yields

g(x, y) = (x−〈v, u1〉)2 +(y−〈v, u2〉)2 +‖v‖2− (〈v, u1〉)2− (〈v, u2〉)2, (41)

for x ∈ R and y ∈ R.

Observe that g(x, y) in (41) is the smallest possible when

x = 〈v, u1〉 and y = 〈v, u2〉.

We therefore get that the point in span({u1, u2}) that is the closest to v is

〈v, u1〉u1 + 〈v, u2〉u2,

which is the definition of f(v). �


