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Solutions to Review Problems for Final Exam

1. Let W be a subspace of R™. Prove that span(W) = W.

Proof: Assume that W is a subspace of R". Then, since span(WW) is the smallest
subspace of R™ that contains W, it follows that

W C span(WV) (1)

and
span(W) C W. (2)

The inclusion in (2) follows from the fact that W C W and the assumption that
W is a subspace. Combining (1) and (2) yields the equality

span(W) = W.
[

2. Let S be linearly independent subset of R". Suppose that v ¢ span(S). Show
that the set S U {v} is linearly independent.

Proof: Assume that S is linearly independent subset of R™ and that v is a vector

in R" with
v & span(95). (3)
Assume that ¢y, ¢, ..., ¢, and ¢ solve the equation
C1U1 + CoUg + -+ + U + cv = 0, (4)
where vy, v9,...,v, € S.

We first see that ¢ = 0 in (4); otherwise we can solve for v in (4) to obtain

C1 Co Cr.
V= ="V — V2= — U,
C C C

which shows that v € span(S), and this is in direct contradiction with (3).
Hence,
c=0 (5)

and, substituting into (4),

U1 + Covg + - - - + v = 0. (6)
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Next, since the vectors vy, vs, ..., v, are in S and S is linearly independent, it
follows from (6) that
cg=c=--=c¢;=0. (7)
Combining (5) and (6) we see that (4) implies that
co=cp=---=¢c,=c=0;
hence, S U {v} is linearly independent. O
3. Let W be a subspace of R" with dimension k < n. Let {wy,ws,..., wi} be a
basis for W. Prove that there exist vectors vy, vs, ..., v,_; in R™ such that the
set {wy, we, ..., Wy, v1,V2,..., vk} is a basis for R™.

Proof: Assume that W is a subspace of R" with basis {wy, ws, ..., wy}; so that
dim(W) = k. Assume also that k& < n. Then, there exists v; € R™ such that
vy & span({wq, wo, ..., wy}); otherwise, {wq, ws, ..., wx} would span R™ and it
would therefore be a basis for R™, since it is also linearly independent; but this
is impossible because k < n. It therefore follows from Problem 2 above that the
set {wy, wa, ..., wy, v} is linearly independent.

If {wy, we, ..., wy, v} spans R it would be basis for R”, so that k+1 = n and
the proof of the statement is done. On the other hand, if span({wq, wo, ..., wy, v1}) #
R™, there exists v, € R™ such that

(% g Span({wh w2, .. ., Wk, Ul})‘
Consequently, the set {wq,ws, ..., wg, vy, v} is linearly independent, by Prob-
lem 2 above. If span({w,ws, ..., wg, v1,v2}) = R™ we are done and k + 2 = n.

If not, there exists v3 € R™ such that

vs & span({wy, wa, ..., Wy, v1,V2}).
Continuing in this fashion, we obtain a set of vectors vy, v, ..., v, in R™ such
that the set
{w17w27 cooy Wy U1, Vo, ... 7/U€}

is linearly independent and

n
span({wy, wa, ..., Wk, vy, Ve, ..., v}) = R"™.
Hence, the set {wy,ws, ..., wg, v1,vs,..., v} is a basis for R™; so that
k+/{=n,

from which we get that ¢ = n—Fk, and the proof of the assertion is now complete.
]
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4. Let A be an m x n matrix and b € R™. Prove that if Az = b has a solution z
in R", then (b, v) = 0 for every v is the null space of AT,

Solution: Let x be a solution of Az = b and v € NMyr. Then, ATv = 0 and

(b,v) = (Az,v)

= (Ax)Tw
= 2TATy
= 270
= 0.
O
-1
5. LetR:(2 -1 3) and C' = 1
—2
Compute the products RC and CR.
Solution: Compute
-1
RC=(2 -1 3)| 1]=-2-1-6=-9,
—2
and
-1 —2 1 -3
CR=| 1](2 -1 3)=( 2 -1 3
—2 —4 2 —6
O
Ry
Ry
6. Let A € M(m,n) and write A = .|, where Ry, Ry, ..., R,, denote the
Ry,

rows of A. Define Ry to be the set
Ri={weR" | Rw=0foralli=1,2,...,m};

that is, R} is the set of vectors in R™ which are orthogonal to the vectors
RY RT ... RT in R™
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(a)

Prove that R is a subspace of R".

Solution: First, observe that R;0 = 0 for all © = 1,2,...,m, so that
0 € R4 and so Ry # 0.

Next, let w; and wy be vectors in R4. Then,
Rw; =0 foralli=1,2,...,m; (8)

and
Riw, =0 foralli=1,2,...,m. (9)

Thus, adding the equations in (8) and (9), and using the distributive prop-
erty of matrix multiplication, we get

Ri(wy +wy) =0 foralli=1,2,...,m,

which shows that w; +w, € RY. Hence, R is closed under vector addition.
Next, let w € R} and ¢ be a scalar. Then,

Rw=0 foralli=1,2,...,m. (10)
Thus, multiplying the equation in (10),
cRw=0 forallt=1,2,...,m,
from which we get
Ri(cw)=0 foralli=1,2,...,m,

by the linearity of the Euclidean inner product. Hence, cw € R, and we
have therefore shown that RY is closed under scalar multiplication.

We have shown that R+ is nonempty and closed under vector addition and
scalar multiplication. Hence, R} is subspace of R™. 0

Prove that R = Nj.

Proof: The following chain of equivalences is true:

weRy iff Rw=0 foralli=1,2,....,m

le
RQU)

iff . =0
R,v

iff Aw=0
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Consequently, R5 = Ny. O

Denote by R 4 the span of the rows of the matrix A. Let v denote a vector
in R”. Prove that if v € N4y and v’ € R4, then v = 0.

T

Proof: Assume that v € R™ is in N4 and its transpose, v’ is in the row—

space of A, R4. By the result of part (b), v € Ry; that is,

Rv=0 fori=1,2,...,m. (11)
Now, since v’ € R 4, there exist scalars ¢y, ca, . .., ¢, such that
UT == 01R1 + CQRQ + 4 CmRm' (12)

Multiplying both sides of (12) on the right by v we obtain
vIv = (1 Ry + caRo + -+ - + R )0,
or
||U||2 =c v+ R+ -+ e R, (13)

where we have used the distributive property of matrix multiplication.
Combining (11) and (13) we see that ||v]] = 0, from which we get that
v=0. [

7. Let B be an n x n matrix satisfying B* = 0 and put A = I + B, where I denotes
the n x n identity matrix. Prove that A is invertible and compute A~! in terms

of I,

B and B?.

Solution: Set QQ = ¢,I + B + c3B? and look for scalars ¢, ¢, and c3 such
that AQ = 1.

Now,

AQ = (I+B)Q
= le + CQB + Cng + B(01] + CQB + 0332)
= 01] + CQB + 6332 + ClB + 0232 + 03B3

= le + (Cl + CQ)B + (C2 + Cg)BQ,

where we have used the assumption that B® = O. Thus, AQ = I if and only if

C1 =1
c1+Cc = 0
ca+c3 = 0.
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Solving this system we get ¢; = 1, ¢ = —1 and ¢3 = 1. Hence, if Q = [ — B+ B2,
then @ is a right—inverse of A = [ + B and therefore A = I + B is invertible

and A~'=1— B+ B~
Let A, B € M(2,2). Show that det(AB) = det(BA).

Proof: Compute
det(AB) = det(A)det(B)

= det(B)det(A),

since multiplication of real numbers is commutative. Hence,
det(AB) = det(BA),

which was to be shown.

Let A, B € M(2,2). Verify that det(A”) = det(A).

Solution: Let A = (CCL Z) . Then, AT = (Z cci) and, therefore,

det(A”) = ad — be = det(A),
which was to be shown.
Given an n x n matrix A = [a;;], the trace of A, denoted tr(A), is

the entries along the main diagonal of A; that is tr(A) = Z ;.
i=1

Let A and B denote n x n matrices. Show that tr(AB) = tr(BA).

Proof: Write A = [a;;] and B = [bj] for i = 1,2,...,n, j = 1,2

k=1,2,...,n. Then, AB = [c;], where

n

Cik = E aijbjp.

=1

Consequently,

r(AB) = > i

U

O

the sum of

,...,n and

(14)
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where we have used (14).

Interchanging the order of summation in (15) we obtain

tl"(AB) = zn:zn:aijbji

j=1 i=1

= 2.2 biay

j=1 i=1

= D> di
j=1
where .
dijijiaij7 fOI'j: 1,2,...,77,7
i=1

are the entries along the main diagonal of the matrix product BA. Hence, we
have shown that tr(AB) = tr(BA). O

11. Let A and B be n X n matrices such that B = Q' AQ for some invertible n x n
matrix ).

Prove that A and B have the same determinant and the same trace.

Solution: Use the result of Problem 8 to compute

det(B) = det(Q1AQ)
_ 4et(QQ1A)
= det(/A)

= det(A).
Similarly, using the result of Problem 10,
w(B) = w(QAQ)

= tr(QQ™'4)
= tr(/A)

= tr(A).
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O
_(1/2 1/3
12. LetA—(1/2 2/3>.
(a) Find a basis B = {v;, vy} for R? made up of eigenvectors of A.
Solution: First, we look for values of A such that the system
(A=X)v=0 (16)

has nontrivial solutions in R2. This is the case if and only if

det(A— ) =0,
which occurs if and only if
7 1
N —-A+-=0
6 * 6 ’

or

(A—l)(k—%)_

1
)\1:6 and )\2:1

We then get that

are eigenvalues of A.

To find an eigenvector corresponding to the eigenvalue A, we solve the
system in (16) for A = A;. In this case, the system can be reduced to the
equation

T+ X9 = 0,

which has solutions

where t is arbitrary. We can therefore take

()

as an eigenvector corresponding to A =

| =

Similar calculations for A = Ay = 1 lead to the equation

3[['1 - 2$2 = 0,
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which has solutions
T — 2
To N 3 ’

where t is arbitrary. Thus, in this case, we obtain the eigenvector

e ().

Since v; and v, are linearly independent, they constitute a basis for R?
because dim(R?) = 2. O

Let @ be the 2 x 2 matrix Q = [v; wvq |, where {vy,v2} is the basis of
eigenvectors found in (a) above. Verify that @ is invertible and compute

Q-'AQ.

Solution: () = b2 ) , so that det(Q) =3+ 2 =5 # 0. Hence Q is

-1 3
4 13 =2
Q1:5(1 1)'
Next, compute
_ 13 =2\ [(1/2 1/3 1 2
QAQ = 5(1 1)(1/2 2/3)(—1 3)

(7))

invertible and

o] =

()
_ (AS §2>

Thus, Q@ 'AQ is a diagonal matrix with the eigenvalues of A as entries
along the main diagonal. 0

Use the result in part (b) above to find a formula for for computing A* for

every positive integer k. Can you say anything about klim AF?
—00
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A0

Solution: Let D denote the matrix ( 0\
2

) . Then, from part (b) in
this problem,

Q'AQ = D.
Multiplying this equation by @ on the left and Q! on the right, we obtain
that

A= QDQ”.
It then follows that

A2 = (QDQ™H)(@QDQ™)

= QD(Q'Q)DQ™!

= QDIDQ™!

= QD*Q .
We may now proceed by induction on k£ to show that

AP =QDFQ™' forall k=1,2,3,...

In fact, once we have established that

AL =QDMQT
we compute, using the associativity of the matrix product,

AF = AAR
= (QDQH@QPIQ™
= QDEQ'QD'Q!
— QDID*'Q™

= QDFQ™.
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Thus, we may compute A* as follows

Ak — QDkQ—l
(1 2\ (A 0\'1/3 -2
- \-1 3 0 X)) 5\ 1 1
11 2 A0 3 -2
~ 5\-1 3 o MJ\L1 1)

Substituting for the values of A; and Ay we then get that

AN D)

from which we get that

L1 3/6F) +2 —(2/6%) +2
A :3<—((3§6’f))+3 (<2;6’f))+3)’ for all &

Observe that, as k — o0,

(3 0s)

O

13. Let T: R™ — R™ be a linear transformation. Let S = {vy,vq,..., v} be a set
of vectors in R".

(a) Suppose that the set of vectors {T'(vq),T(v2),...,T(vg)} is a linearly in-

dependent set of vectors in R™. Prove that the set S must be a linearly
independent set in R".

Solution: Assume that {T'(v1),T(vg),...,T(v)} is linearly independent
and consider the equation

c1v1 + CoUg + -+ - 4 cpup = 0. (17)
Apply the function 7' to both sides of (17) to get
T(c1v1 + cug + -+ - + cpvg) = T(0),

or
ClT(Ul) + CQT(UQ) + -+ CkT(Uk) =0, (18)
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where we have used the linearity of 7.

It follows from (18) and the assumption that {T'(vq),T(v2), ..., T(vg)} is
linearly independent that

cp=cp=---=¢,=0.
Hence, the only solution of the equation in (17) is the trivial solution;

consequently, the set {vy, v, ..., v} is linearly independent. O

(b) Is the converse of the statement in part (a) true? If not, produce a counter—
example to show that the converse is generally false.

Solution: It is not true in general that the image, {T'(vy), T (ve), ..., T(vx)},
of a linearly independent set {vy, v, ..., v;} in R™ under a linear 7': R” —
R™ is linearly independent. To see why this is the case, consider the linear
transformation 7': R? — R? given by

()0 e (e

Observe that the linearly independent set {e;,es}, the standard basis in
R2, gets mapped to the set

{T(e1),T(e2)} = {en, 0},
which is linearly dependent, since the zero vector is in the set. 0

14. Let T: R® — R™ denote a linear transformation. Let W denote the null space,

Nr, of T. Assume that W has dimension k < n. Let {wy,ws, ..., ws} be a basis
for W and {w,wa, ..., wg,v1,v9,...,0,_x} be a basis for R”. Prove that that
the set {T'(v1),T(v2),...,T(v,_x)} is a basis for Zr, the image of T. Deduce
that

dim(Nr) + dim(Z7) = n.

Solution: Assume that T: R” — R™ is a linear transformation. Let W = N7p,

null space, and assume that dim(W) = k < n. Let {wy,ws, ..., wi} be a basis
for W and {wy, ws, ..., wy, v1,vs,..., 0,1} be a basis for R". We show that the
set

{T(U1)7 T(Ug), s 7T(Un—/€)}
is a basis for the image of T', Zr.
We first show that {T'(v1),T(vg),...,T(v,—x)} spans Zy. Let y € Zr; then,

y =T(x), for some x € R". (19)
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Since {wy,ws, ..., Wk, v1,ve,...,0,_k} be a basis for R, there exists scalars
dl, dg, e ,dk, C1,C2y...,Cpn_k such that
T = dlwl + dg”d)g +--+ dkwk +cvr + -+ Cp—kUn—k- (20)

It follows from (19), (20) and the assumption that 7" is linear that
Yy = le(wl) + dgT(U)g) + -4 dkT(wk) + ClT(Ul) + -4 Cn—k:T(Un—k:)- (21)

Next, use the fact that wq, ws, ..., wy are in the null space of T" to obtain from
(21) that
Yy = CIT(UI) +---+ Cn—kT(Un—k)a

which shows that y € span({T'(v1),T(vs),...,T(v,—k)}). We have therefore
shown that

Zr Cspan({T(v1), T(va), ..., T(vp—k)}). (22)
In order to show the reverse inclusion to that in (22), let
y € span({T'(v1), T (v2), ..., T (Vn-k)});

then,
Yy = C1T(U1) + CQT(’UQ) + -+ CnfkT(Unfk)a (23)

for some scalars ¢y, co, ..., c . Next, use the assumption that 7T is linear to
get from (23) that

y = T(c1v1 + cava + - + CogUn—t),
which shows that y € Zy. Thus,
span({T'(v1), T (ve), ..., T(vn_k)}) C Zr. (24)
Combining (22) and (24) yields
Zr = span({T(v1), T(v2), ..., T(vp_g)})-

Hence, {T'(vy),T(va), ..., T(vn_k)} spans Zr.

Next, we shoe that {T'(v1),T(v2),...,T(v,—g)} is linearly independent. To see
why this is so, let ¢y, co, ..., c,_r be scalars such that

ClT(Ul) + CgT(UQ) + - Cn_kT<Un_k) = 0. (25)
Using the assumption that 7" is linear, we can rewrite (25) as

T(clvl + Ccovg 4+ -+ - + Cn—kvn—k) = 07
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15.

which shows that ¢;v1+cova+- - -+ ¢p_kUn_r € Np. Thus, since {wy, wo, ..., wg}
is a basis for N,

C1V1 + CoU2 + + -+ + Cp— g Up— = d1w2 + dek +--- 4 dkwk, (26)
for some scalars dy,ds, ..., d;. We can rewrite (26) as
(—dy)wg + (—do)wy, + - -+ + (—dg)wy + 101 + V2 + -+ + ChpVp— = 0, (27)

so that, since {wy, ws, ..., Wk, V1, V2, ..., V,_} is a basis for R", it follows from

(27) that
—di=—-dy=+-=—dp,=ci=cy=--+=Cp_t, = 0. (28)
In particular, we get from (28) that
cp=c="-+=cpy=0. (29)

We have shown that (25) implies (29); thus, the set {T'(v1), T(v2), ..., T(Vn—k)}
is linearly independent.

Hence {T'(vy),T(vq),...,T(vn—k)} is is a basis for Zr, so that
dim(Zy) = n — k = n — dim(N7),
from which we get
dim(N7) + dim(Zr) = n,
which was to be shown. 0]
Let T: R™ — R" denote a linear transformation. Prove that if A is an eigenvalue

of T, then \¥ is an eigenvalue of T* for every positive integer k. If ; is an
eigenvalue of T%, is p'/* always and eigenvalue of 77

Solution: Let )\ be an eigenvalue of T: R™ — R™. Then, there exists a nonzero
vector, v, in R™ such that
T(v) = lv.

Applying the transformation, T, on both sides and using the fact that T is
linear and that v is an eigenvector corresponding to A, we obtain that

T?(v) = T(\v) = AT(v) = AMw = A,

so that, since v # 0, A\? is an eigenvalue for 72
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16.

We may now proceed by induction on k& to show that
N forall k=1,2,3,...,

is an eigenvalue of T%. To do this, assume we have established that \*~! is
an eigenvalue of 7#~! and that v is an eigenvector for T' corresponding to the
eigenvalue ), so that v is also an eigenvector of 77! corresponding to A*~1. We
then have that

T (v) = Nt

Thus, applying the transformation, 7', on both sides and using the fact that T’
is linear and that v is an eigenvector corresponding to A, we obtain that

TH(v) = T(T" ) = T(A\*1o) = N1 (v) = M1 = M,
so that, since v # 0, A* is an eigenvalue for T%.

Next, consider the function 7': R? — R? given by rotation in the counterclock-
wise sense by 90° or 7/2 radians; that is,

(G- G ()er

Then, 7?: R? — R? is given by

f()-( () o (5)er

which has 1 = —1 as the only eigenvalue. Observe that T' has no real eigenval-
ues, so p'/? cannot be a (real) eigenvalue of T O

Let £ = {e1,es} denote the standard basis in R?, and let f: R? — R? be a
linear function satisfying: f(e;) = e + e and f(ez) = 2e; — es.

Give the matrix representations for f and f o f relative to &£.

Solution: Observe that

ren=(1) aa se-(3).

It then follows that the matrix representation for f relative to & is

1 2
w1 3
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17.

18.

The matrix representation of f o f is the product MyM;, or
1 2 1 2 3 0
MW_(1—4)@_4)_<0 3)

A function f: R? — R? is defined as follows: Each vector v € R? is reflected
across the y—axis, and then doubled in length to yield f(v).

O

Verify that f is linear and determine the matrix representation, My, for f
relative to the standard basis in R?.

Solution: The function f is the composition of the reflection R: R* — R?

given by
R(x)——(l >(x>’ foraH(x)ERQ,
Y 0 1 Y Y

and the function 7': R? — R? given by T(w) = 2w for all w € R? or, in matrix

form,
T($):(2 0)(30)’ forall<I>ER2.
Y U Y Y

Note that both R and T are linear since they are both defined in terms of
multiplication by a matrix. It then follows that f = T o R is linear and its
matrix representation, M, relative to the standard basis in R? is

2 0\ /=1 0 —2 0
A@:Mﬂhz(o 2)(0 1):(0 2)

Find a 2 x 2 matrix A such that the function T: R? — R? given by T'(v) = Av
maps the coordinates of any vector, relative to the standard basis in R2, to its

coordinates relative the basis B = { ( 1 ) , (_1 ) } )

Solution: Denote the vectors in B by v; and wv,, respectively, so that

o (1) i e (1)

We want the function 7' to satisfy

O

T(v) = [v]s (30)
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19.

for every v € R? given in terms of the standard basis in R2.

We can attain (30) by means of the change of basis matrix [id]Z, where
E ={e1, e}
is the standard basis in R?. Indeed, using the expression
[id(v)]s = [id]Z[v]e,

we obtain
[v]s = [id]Z v. (31)

The matrix [id]8 in (31) is the inverse of the matrix [id]§ given by

) 1 1
[’Ld]g = |:U1 ’Ug} = ( 1 —1 ) .
We therefore have that
. 1 /-1 -1 /2 1/2
B _ _— _
lidle = =5 (—1 1 ) - ( 1/2 —1/2 ) ' (32)
Combining (30), (31) and (32) we get

T(v) = Av
a-(1 R)

Let u; and uy denote a unit vector in R? that are orthogonal to each other; i.e.,
(u1,us) = 0, where (-, -) denotes the Euclidean inner product in R3.

Define f: R? — R3 by f(v) = (v,u;)u; + (v, us)us for all v € R3.

where A is the matrix

O

(a) Use the Dimension Theorem to compute dim(Ny).
Solution: We first note that

Ty = span({us, us}). (33)
To see why the assertion in (33) is true, let w € Zy; so that,

w = f(v) = (v,ur)uy + (v, us)us,
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for some v € R3; thus, w is a linear combination of u; and uy. We have
therefore shown that

Z; C span({u1, ua}). (34)
In order to show the other inclusion, note that

flur) = (ur, ur)ur + (ur, ug)us = uq,

since (u1,uz) = 0 and uy is a unit vector. Thus, u; = f(uq); so that
uy € Zy. Similarly, us € Zy. We then have that

{ur,us} C Iy,
from which we get that
span({ur, ua}) C Zy, (35)

since Z; is a subspace of R* and span({uy, us}) is the smallest subspace of
R3 that contains {uy, us}. Combining (34) and (35) yields (33).

Next, we show that {uy, us} is linearly independent. Consider the equation
ciuq + coug = 0. (36)
Take the inner product with u; on both sides of (36) to get
(cruy + coug, up) = (0, uq),
or, using the bi-linearity of the inner product,
cr(ur, ur) + cafug, up) = 0; (37)

thus, since (uy,us) = 0 and u; is a unit vector, it follows from (37) that
¢; = 0. Similarly, co = 0. We therefore get that the equation in (36) has
only the trivial solution. Therefore, the set {uy, us} is linearly independent.
Hence, in view of (33), {u1,u2} is a basis for Z;.

It then follows that dim(Z;) = 2. Hence, by the Dimension Theorem for
Linear Transformations,

dim(Ny) + dim(Z;) = 3,

we obtain that

dim(/\/f) = 1.
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(b)

Show that v — f(v) is orthogonal to every vector w in the image of f.

Solution: In view of (33) in part (a) of this problem, it suffices to show
that

(v—f),u1) =0 and (v— f(v),ug) =0. (38)
Indeed, assume that (38) has been established. Take w € Zy; then,
w = cluy + ColUa,
for some scalars ¢; and ¢, by virtue of (33). Then,

(v=f)w) = (v=[fv),cu + cus)
= v — f(v),u) + c2(v = f(v), u2),
by the bi-linearity of the Euclidean inner product; so that, using (38),
(v—f(v),w) =0, forallweIZ.
In order to prove the claims in (38), compute
(0= Ff),ur) = (v,u1) = (f(v), )
= (v,u1) — (v, ur)uy + (v, ug)ug, uy)

= (v, u1) — (v, ur)(ur, ur) + (v, ug) (us, us),

where we have used the bi—linearity of the Euclidean inner product. Thus,
since (u1,us) = 0 and wu; is a unit vector,

(v=Ff(),wm) = (v,u1) = {v,u1) = 0.
Similarly,
<U - f(?}), u2> = <U’ u2> - <U7u2> = 0.
OJ

Show that f(v) gives the point in the plane spanned by u; and uy that is
the closest to v in R3.

Solution: Let v € R? be given. Any point in span({u;, us}) is of the form
xuy + yug, where x and y are scalars. Define a function of two variables

g(x,y) = ||v — 2u; — yup||?>, forx € Rand y € R. (39)
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Thus, g(z,y) in (39) gives the square of the distance from v to a point
in the plane span({uy,us}) with coordinates z and y relative to the basis
B = span({uy,us}) for the plane. We would like to find the coordinates
of the point in the plane spanned by w; and wuy for which g(z,y) is the
smallest possible.

Use the definition of the Euclidean norm and the properties of the Eu-
clidean inner product to rewrite (39) as follows:

9(1’7 y) = <U — TU; — YU,V — TU — yu2>

= <Ua U> - fL’<’U, u1> - y<’U, U,2>
—x{uy, v) + 2% (uy, ur) + 2y (us, ug)
—y(ug, v) + 2y (ug, u1)y*(us, us);

so that, using the assumptions that u; and uy are unit vectors, and (uy, ug) =
0,
g(z,y) = 2* +y* = 2x(v,u1) — 2y(v,us) + [|v]|?, (40)

for z € R and y € R.

Completing the squares in = and in y for the expression for g(z,y) in (40)
yields

9(x,y) = (x = (v,un)* + (Y — (v, u2))* + [ol* = (v, u1))* = ((v,u2))?, (41)

for z € R and y € R.
Observe that g(x,y) in (41) is the smallest possible when

= <U7U,1> and Yy = <U,’LL2>.
We therefore get that the point in span({uy, us}) that is the closest to v is
(v, u)us + (v, ug)us,

which is the definition of f(v). O



