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Solutions to Review Problems for Exam #1

1. Let Q be a bounded region in the zy—plane, and let G = G(z,y) be continuous
function defined in €. Suppose that

// G(z,y)v(z,y)dzdy = 0

Q

for every continuously differentiable function v defined in 2 and vanishing on
the boundary of €2. Show that G(x,y) = 0 for every (x,y) € €.

Solution: Suppose that

//Q G(z,y)v(z,y)dedy =0, for all v € C,(2, R). (1)

Assume, by way of contradiction, that there exists (z,,y,) € € such that
G(x,Y,) # 0. We may assume without loss of generality that G(x,,y,) > 0.

G(LUO, yO)

Using the continuity of G, with ¢ = , and the assumption that € is

open, we obtain d > 0 such that the open rectangle
Rs(xo,Y0) = (0 — 0,6 + ) X (Yo — &,y, + 9)
is contained in €2, and

G(Zo, Yo)
9

where we have used Rs to denote Rs(o, Yo).

G(z,y) > >0, forall (z,y) € Rs, (2)

Define v: Q2 — R as follows:

U(l’ ): (ﬂs—xo+5)(:vo+5_g:)(y—y0+5)(y0+5—y), if([E,y)ER5
Y 0, if (z,y) € Q\Rs.

Consequently, v € C,(£2, R); furthermore, v(z,y) = 0 for (z,y) € Ry, and
v(xz,y) >0, forall (z,y) € Rs. (3)

It follows from the definition of v and the estimates in (2) and (3) that

//Q G(z,y)v(z,y) dedy = //35 G(z,y)v(x,y) dedy > 0,

which is in direct contradiction with the assumption in (1). We therefore con-
clude that G(z,y) = 0 for all (z,y) € €2, which was to be shown. O
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2. Let f € C([a,b],R) and g € C([a,b],R) be given. Define h: R — R by

h(t) = / f(2) — tg(a)2 du, for all t € R. (@)

Observe that h(t) > 0 for all t € R. Observe also that h is a differentiable
function of ¢.

b
(a) Assume that / (g9(x))* dz # 0. Find the value ¢, € R such that

h(t,) < h(t), forallteR. (5)
Solution: Expand the integrand in (4) to compute
b b b
W) = [ (@) de =2t [ (o) do ¢ [ (gla)? de. (6)

for t € R. We then see that h is a quadratic polynomial. It is therefore
differentiable with derivative

b b
h'(t) = —2/ f(x)g(z) dx + 2t/ (g(x))? dz, fort e R, (7)

and second derivative

h"(t) = 2/ (g(x))* dz, fort e R. (8)

b
Since we are assuming that / (g(x))* dz # 0, we obtain from (8) that

R"(t) > 0 for all t € R. Thus, h has a unique minimizer at a point ¢, such
that h'(t,) = 0; or, according to (7), at

[ e aa
[y e

a

to =

For this value of ¢, the estimate in (5) holds true. O
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b
(b) Assume that / (g(x))? do # 0, and let t, be as in the previous part. Use

the observation h(t,) > 0 to the deduce the inequality

(/ab f(@)g(x) dx)2 < /ab(f(:v))2 dx - /ab(g(x))z dr. (10)

This leads to the Cauchy—Schwarz inequality

\// )2 da - \// D2 e (11)

Solution: From the definition of h(t) in (4) we see that

h(t) >0, forallteR.

Thus, in particular,
h(t,) >0, (12)

or, in view of (6),

/a(f dx — 2t, / f(x da:—i—tZ/ab(g(x))Q dx > 0. (13)

Next, substitute the value of ¢, in (9) into the estimate in (13) to obtain

/:(fw . (/ b{(w)g(m) dw)2 ) (/ ' f@)et) dx)2 O

| @y as / (@) d .
/ ) - </ v > >0,
‘ / (9(2))? da

from which we get that

(/:f ()g() dw)2 </ () de / (g(o)? da,

which is (10). Taking the positive square root on both sides of (10) then
yields (11). O
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(¢) When does the inequality in part (b) yields equality?
Solution: Equality in the inequality in (10) occurs when equality in (12)
occurs; namely,

or, using the definition of h in (4),

/ (@) — tuglo)]? dz = 0. (14)

Consequently, since f and g are assumed to be continuous on [a,b], it
follows from (14) that

f(z) =tog(z), forall z € [a,b].

Hence, equality in the Cauchy—Schwarz inequality occurs if and only if f

is a constant multiple of g. OJ
3. LetVz{yEC'101 ‘/ dx<oo},anddeﬁneJ:V—>Rby
J(y)zﬁ/( '(z))*dz  forally € V. (15)
0

(a) Prove that J is Gateaux differentiable and compute dJ(y;v) for y,v € V.
Solution: For y and v in V, and t € R, compute

1

Hy+t) = / (o (2) + 10/ (x))*de

_ %/Ol(y’(x))de—l—t/ () dx+—/ ))?de:

so that J(y + tv) is a quadratic polynomial in ¢. Hence, the map
t— J(y+tv), forteR,

is differentiable with derivative

CCZZt[J(y +tv)] = /01 Y (zx)v'(x)dz + t/ol(v/(:v))de, for all t € R.
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Consequently, J is Gateaux differentiable at every y € V in the direction
of v in V, with Gateaux derivative

d 1
aiyio) = G+ )| = [ v (16)
t=0 0
for y,v e V.
O
Prove that J is convex but not strictly convex.
Solution: For y and v in V', compute
1 ! ! ! 2
Jy+v) = 5 | (2)+v(2)) de
0
1 ! 1 1
— 5 [ W@ras [y [ @)k
2 Jo 0 2 Jo
so that, in view of (16) and the definition of J in (15),
1 ! / 2
J(y +v) = J(y)+dJ(y;v)+§ (v'(z))*dx. (17)
0
Consequently,
Jy+v) =2 J(y) +dJ(y;v), foryveV, (18)

which shows that J is convex in V.

Now, in view of (17), equality in (18) holds if and only if

[ wwras=o

so that, since v is continuous, v'(z) = 0 for all x € [0,1]. Thus, v(z) = ¢
for all z € [0, 1], where ¢ is a constnat not necessarily 0. Hence, J is not
strictly convex. O

4. Let f: R — R be a real valued function of a single variable, and assume that
f is twice differentiable with continuous second derivative f”: R — R. Let

V:

C'([a,b],R) and define J: V — R by

J(y) = / f(y(x)) de, forallyeV. (19)
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Put V, = C}([a,b],R) and define
A={yeCa,b]|y(a) =y, and y(b) =y} (20)
for given real numbers y, and ;.

(a) Show that if f”(z) > 0 for all z € R, then J is strictly convex in A.

Solution: By the arguments used in Example 4.1.3 in the lecture notes, we
can show that the the functional J defined in (19) is Gateaux differentiable
for every y € A in the direction of n € V,, with Gateaux derivative given

by
b
dmmzfmmwwm forye Aand eV,  (21)

since f': R — R is a continuous function.

Since we are also assuming that the f”(z) > 0 for all z € R, the arguments
used in Example 4.3.7 in the lecture notes can be used to show that

fz+w) = f(z)+ f'(2)w, forall z,w e R, (22)
with equality if and only if w = 0. (23)

It follows from (22), the definition of J in (19) and (21) that
Jy+n) = Jy)+dJ(y;n), forye Aandnel, (24)

which shows that J is convex in A.

To show that J is strictly convex in A, assume that equality in (24) holds
true for some y € A and n € V,. Then, using the definition of J in (19)
and the result in (21),

/fwm+wmm:/ﬂwmmw/fwmwwm,

which we can rewrite as

/ [ () +n'(z) = f(W' () = [y @) ()] dw = 0. (25)

It follows from the inequality in (22) that the integrand in (25) is nonneg-
ative. Hence, since f, f’, ¥/ and ' are continuous on |a, b], it follows from
(25) that

fW (@) +1'(x) = fy' () = f'(y' () () =0, forall z € [a,b].
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It then follows form (22) and (23) that
n'(z) =0, forall z € [a,b];

so that, n(x) = c for all = € [a, b], where ¢ is a constant. Now, since n € V,,
n(a) = 0; therefore, ¢ = 0. Consequently, equality in (24) holds true if and
only if n(z) = 0 for all x € [a, b]. This shows that J given in (19) is strictly
convex in A. O

Give the Euler-Lagrange equation associated with J and, if possible, solve
it subject to the boundary conditions in A.
Solution: The Euler-Lagrange equation associated with the functional J
defined in (19) is

d

W@ =0, for € (o)
from which we get that

' (x))=C, forall x € [a,b], (26)

and some constant C.

It follows from the assumptions that f”(z) > 0 for all z € R, that f'(z) is
a strictly increasing function of z. Consequently, we obtain from (26) that

y(x) =¢, forall z € [a,b], (27)

and some constant c;.
Integrating the equation in (27) we obtain that

y(x) = crx + ¢y, forall z € [a,b), (28)

and some constants ¢; and cs.
Using the assumption that y.A, we see that y must also satisfy the condi-
tions

y(a) =y, and y(b) =y, (29)
according to the definition of A in (20). Applying the boundary conditions
in (29) to the function in (28) we find that

Y1 Y% by, —ay
cl = and ¢3=—-—".
b—a b—a
Thus, using the expression for y in (28),
— by, —
y(x):yl Yo oy oW tora << (30)

b—a b—a
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(c¢) Find the unique minimizer of J in A.

Solution: The function in (30) is the unique minimizer of J in A because
J is strictly convex, as shown in part (a) of this problem. This assertion
follows from the convex minimization theorem proved in class and in the
lecture notes (see Theorem 4.4.1). O

5. Let F': R x R — R denote a continuous function of two variables y and z. Let
V = CY([a,b],R) and define the functional

J(y) = / F(y(z). (2))dz, forye V. (31)

(a) Assume that y(a) = y, and y(b) = y; and assume that y, < y;. Make a
change of variables to express the functional in (31) in terms of an integral
with respect to y of the form

J(z) = /y1 G(y, 2’ (y))dy, for z € C'([yo, 1], R). (32)

Yo
Express the function G in terms of F.

Solution: Assume that y'(x) # 0 for all z € [a,b] and make a change of
variables to rewrite the integral in (31) as

b y(b) .
/ Fly(a), ' («))de = / ) F(y,y%x»fl—y ay,

where, by virtue of the Chain Rule,

de 1
&=
dx
or
a:':;,

where we have used z’ to denote 2'(y) and 3’ to denote y'(z). We then

have that )
Y1 1
/ F(y(x),y'(x))dz :/ F (y, ;) x dy,
a Yo
Thus, defining

1
G(y,z) = zF (y, ;) , foryeRand z #0. (33)
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We then have that

/ " F(y(e).f (@)de = | cwa) ay

Yo

which yields the expression in (32). This expresses the functional in (31) in
terms of x as a function of y for y, < y < y;. Thus, we have exchanged the
roles of the variables x and y. In (32) y is thought of as the independent
variable and z is the dependent variable. 0]

Derive the Euler-Lagrange equation associated with the functional J given
in (32).

Solution: Thinking of y as the independent variable and of x as the de-
pendent variable, the Euler-Lagrange equation corresponding to the func-
tional in (32) is

d
d_y[GZ(yv )] = Ga(y, o),
or
Lia ) =0 (34)
dy z y7 - Y
since G(y, z) does not depend explicitly on z. O

Solve the differential equation derived in the previous part and deduce
that, if y is a solution of the Euler—Lagrange equation associated with the
functional J given in (31), then

Yy, y) — Fy,y) =C, (35)

for some constant C.

Solution: Integrate the differential equation in (34) to obtain
Gz(y, LL’/) = C1, (36>

for some constant ¢, where, according to (33),

Gy, 2)=F (y%> + 2k, (y %) : (—%) :

where we have used the Product Rule and the Chain Rule; so that,

Gy, 2) = F (y, %) g (y, %) | (37)

z
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1
Substituting 2’ for z in (37) and using the fact that 2’ = —, we obtain
Y

that

Gz(y7 ml) = F(ya y/) - y/Fz<y7 y/)' (38)
In view of (36) and (38), we see that (35) follows from (36) and (38) by
setting C' = —c;. U

6. Let V denote a normed, linear space, and V, a nontrivial subspace of V', and
Assume that J: V — R and J;: V — R are Gateaux differentiable in V' along
any direction v € V.

(a) Show that d.J(u;cv) = ¢ dJ(u;v) for any ¢ € R.

Solution: Assume that J is Gateaux differentiable at v € V in the direc-
J(u+tv) — J(u)

tion v € V,. Then, lim exists and
t—0 t
t —_
fim L) =) e (39)
t—0 t

Next, suppose that ¢ # 0 and consider

Ju+t(cv)) = J(u)  J(u+ (ct)v)) — J(u)
. =c- " , fort#0. (40)

Put r = ct; then, since we are assuming that ¢ #£ 0,
t — 0 if and only if » — 0.
We then get from (40) that

J(u+t(cv)) — J(u) J(u+rv)) — J(u)

lim =c-lim ;
t—0 t r—0 r
so that, in view of (39),
dJ(u; cv) = ¢ - dJ(u;v). (41)

Observe that (41) also holds true for ¢ = 0; this follows from the fact
that dJ(u;0) = 0, which can be seen to be true from the definition of the
Gateaux derivative in (39). O
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(b) Show that J + J; is Gateaux differentiable at any u € V' in the direction

of v eV,, and
d(J + Ji)(u;v) = dJ (u;v) + dJy (u; v). (42)

Solution: Let u € V, v € V, and assume that J and J; are Gateaux
differentiable at u in the direction of v. Then, the maps

t— J(u+tv), forteR,

and
t— Ji(u+tv), forteR,

are differentiable at t = 0 and

dJ(u;v) = E[J(u + tv)]

43
dt t=0 (43)
and p
V) = — 44
dJy (u;v) dt[Jl(u + tv)] . (44)
Now, by the definition of the sum of the functionals J and .Jy,
(J+ 1) (u+tv) = J(u+tv) + Ji(u+tv), forteR,
so that, the map
t—= (J+ )(u+tv), forteR, (45)

is the sum of two differentiable functions of ¢; hence, the map in (45) is
differentiable at ¢ = 0 and

d d d
%[(J + Ji)(u +tv)] = E[‘](u + tv)] ot E[‘]l(“ + tv)] K
from which (42), by virtue of (43) and (44). O

7. Let V denote a normed, linear space, and V, a nontrivial subspace of V', and A
a nonempty subset of V. Assume that J;: V — R and Jy: V — R are Gateaux
differentiable in V' along any direction v € V.
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(a) Show that if J; and J, are convex in A, then so are ¢®J; and J; + Jy, for
any c € R.

Solution: Assume that J;: V — Rand Jy: V — R are convex functionals
in A. Then,

Ji(u+v) = Ji(u) +dJy(u;v), forue A, veV,withu+ove A (46)
and

Jo(u+v) = Jo(u) + dJo(u;v), forue A, veV,withu+ove A (47)
Multiply on both sides of (46) by ¢* to get

AEJ(u+v) = A (u) + EdJ(uv), forue A, v eV, withu+v € A,
since ¢ > 0. Then, since

d(J(u;v)) = *dJ(u;v),

we get that

AJ(u+v) = Ay (u) +dvdi(u;v)), forue A, v eV, withu+v € A,

which shows that ¢2.J; is convex in A.

Next, use the definition of the sum of functionals to compute, for u € A
and v € V, with u +v € A,

(J1+ L) (u+v) = Ji(u+v)+ Jo(u+v);
so that, in view of (46) and (47),
(Ji+ )(u+v) = Ji(u)+dN(u;v) + Jo(u) + dJa(u;v)
= Ji(u) + Jo(u) + dJy(u;v) + dJy(u; v)
= (1 + Jo)(u) +d(Jy + Jo)(u;v),
where we have used the result (42) in part (b) Problem 6. Thus,
(J1+ Ja)(u+v) = (Jy+ Jo) () + d(Jy + Jo)(u;0), (48)

forue A, v eV, with u+v € A. Hence, J; + J5 is convex in A. O
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(b) Show that if .J; is convex in A and J, is strictly convex in A, then J; + Jo
is strictly convex in A.

Solution: Assume J;: V — R is convex in A and Jy: V' — R is strictly
convex in A. Then, the inequalities in (46) and (47) hold true, and equality
in (47) holds true if and only if v = 0.

We have already seen in part (a) that J; + J; is convex in A, To show that
Ji + Jy is also strictly convex in A, suppose that equality in (48) holds
true; so that,

(J1 + JQ)(U + U) = (Jl + JQ)(U) + d(Jl + JQ)(U; U),

for u € A, and v € V, with u+v € A. Then, using (42) and the definition
of the sum of two functionals,

Ji(u~+v) + Jo(u+v) = Ji(u) + Jo(u) + dJy(u;v) + dJo(u;v),
which we can rewrite as
Jo(u+v) — Jo(u) — dJo(u;v) = Jy(u) + dJy(u;0) — Ji(u+v).  (49)

It follows from the inequalities in (47) and (46) that the left-hand side of
(49) is greater that or equal to 0, while the right-hand side is less than or
equal to 0. Consequently,

Jo(u+v) — Jo(u) — dJo(u;v) = 0.

Therefore, since J; is strictly convex in A, it follows that v = 0. We have
thus shown that, if equality in (48) holds true, then v = 0. Conversely, we
can see that if v = 0 then equality in (48) holds true. Hence, J; + J is
strictly convex in A, if J, is strictly convex in A. d

8. Let J: A — R be defined by

1/2
Iy) = /0 @)+ V1T W@ de,  forallyc A, (50)
where
A={yeC'(0,1/2],R) | y(0) = —1 and y(1/2) = —v/3/2}. (51)

Verify that J is strictly convex and find, if possible, the unique minimizing
function for J in A.
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Solution: Write the functional J in (50) as the sum of two functionals J;: V' —
R and J: V — R, where V = C*(]0,1/2],R) and

1/2
Ji(y) = / y(x) dz, foryeV, (52)
0

and 12
)= [ VIT W@ dn, foryev (53)
0
In view of (50), (52) and (53), we see that
J(y) = h(y) + Jo(y), forallyelV.

Observe that J; is a linear functional, hence, J; is convex (but not strictly
convex). On the other hand, J; is strictly convex; this is a consequence of the
result in part (a) of Problem 4 in this set of problems, with f(z) = 1+ 22
for all z € R. Hence, by the result in part (b) in Problem 7, the functional J
defined in (50) is strictly convex in A.

To find the unique minimizer in A of the functional J defined in (50), we first
solve the Euler-Lagrange equation associated with J. In this case, the function
F(z,y, z) corresponding to J is

F(x,y,2) =y+ V1422 forxe|0,1/2],y € R, and z € R.

The partial derivatives of F' with respect to y and z, respectively, are

z
V1+ 22

so that, the Euler-Lagrange equation associated with the functional J given in

(50) is
d Y B
u <—1 L W) - n

Integrating the equation in (54) yields

Fy(x,y,2) =1 and F,(z,y,z2) = for (x,y,2) € 0,1/2] x R x R;

/

Y

) | (55)

DO | —

=x+4+c¢, for0<z<

and for some constant of integration ¢;. Solving the equation in (55) for ¢/, we

obtain
’ T+ c

V= \/1—(3:—1—01)2.

(56)
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The differential equation in (56) can be integrated to yield

y(x)=—/1—(r+c1)?+c, for0<a<

and another constant of integration cs.

1
57 (57)

Since we are looking for a minimizer of J in A, where A is given in (51), the
function in (57) must satisfy the boundary conditions

3
y(0)=—1 and y(1/2) = —%. (58)
Thus, we must have that ¢; = ¢ = 0 in (57) for y to satisfy the boundary

conditions in (58). Consequently,

1
y(x) = —v1—22 for0<z< 5 (59)
By the Convex Minimization Theorem proved in class and in the lecture notes,
the function y € A given in (59) is the unique minimizer of the functional .J

defined in (50) over A given in (51). O
9. Let J: A — R be defined by

J(y) = /1 [y(z) + zy/(x)] de, for all y € A, (60)

where

A={yecC'1,2]|y(1) =1and y(2) = 2}. (61)

Verify that .J is convex, but not strictly convex in A. Can you find more than
one function which minimizes J in A?

Solution: Observe that the functional J defined in (60) and (61) is a linear
functional in V' = C([1,2],R). Hence, J is is convex, but not strictly convex

in A.
Observe also that, for any y € A,

1) = [ 4-fente)) do,

where we have used the Product Rule; so that, by the Fundamental Theorem

of Calculus,
2

Jy) = ay(@)| | = 2y(2) ().
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Hence, using the definition of A in (61),
J(y)=212)—1=3, foralyeA;;

so that J is constant in .A. Hence, every function in A is a minimizer of J in

A. O



