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Solutions to Review Problems for Exam #1

1. Let Ω be a bounded region in the xy–plane, and let G = G(x, y) be continuous
function defined in Ω. Suppose that∫∫

Ω

G(x, y)v(x, y)dxdy = 0

for every continuously differentiable function v defined in Ω and vanishing on
the boundary of Ω. Show that G(x, y) = 0 for every (x, y) ∈ Ω.

Solution: Suppose that∫∫
Ω

G(x, y)v(x, y)dxdy = 0, for all v ∈ Co(Ω,R). (1)

Assume, by way of contradiction, that there exists (xo, yo) ∈ Ω such that
G(xo, yo) 6= 0. We may assume without loss of generality that G(xo, yo) > 0.

Using the continuity of G, with ε =
G(xo, yo)

2
, and the assumption that Ω is

open, we obtain δ > 0 such that the open rectangle

Rδ(xo, yo) = (xo − δ, xo + δ)× (yo − δ, yo + δ)

is contained in Ω, and

G(x, y) >
G(xo, yo)

2
> 0, for all (x, y) ∈ Rδ, (2)

where we have used Rδ to denote Rδ(xo, yo).

Define v : Ω→ R as follows:

v(x, y) =

{
(x− xo + δ)(xo + δ − x)(y − yo + δ)(yo + δ − y), if (x, y) ∈ Rδ

0, if (x, y) ∈ Ω\Rδ.

Consequently, v ∈ Co(Ω,R); furthermore, v(x, y) = 0 for (x, y) 6∈ Rδ, and

v(x, y) > 0, for all (x, y) ∈ Rδ. (3)

It follows from the definition of v and the estimates in (2) and (3) that∫∫
Ω

G(x, y)v(x, y) dxdy =

∫∫
Rδ

G(x, y)v(x, y) dxdy > 0,

which is in direct contradiction with the assumption in (1). We therefore con-
clude that G(x, y) = 0 for all (x, y) ∈ Ω, which was to be shown. �
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2. Let f ∈ C([a, b],R) and g ∈ C([a, b],R) be given. Define h : R→ R by

h(t) =

∫ b

a

[f(x)− tg(x)]2 dx, for all t ∈ R. (4)

Observe that h(t) > 0 for all t ∈ R. Observe also that h is a differentiable
function of t.

(a) Assume that

∫ b

a

(g(x))2 dx 6= 0. Find the value to ∈ R such that

h(to) 6 h(t), for all t ∈ R. (5)

Solution: Expand the integrand in (4) to compute

h(t) =

∫ b

a

(f(x))2 dx− 2t

∫ b

a

f(x)g(x) dx+ t2
∫ b

a

(g(x))2 dx, (6)

for t ∈ R. We then see that h is a quadratic polynomial. It is therefore
differentiable with derivative

h′(t) = −2

∫ b

a

f(x)g(x) dx+ 2t

∫ b

a

(g(x))2 dx, for t ∈ R, (7)

and second derivative

h′′(t) = 2

∫ b

a

(g(x))2 dx, for t ∈ R. (8)

Since we are assuming that

∫ b

a

(g(x))2 dx 6= 0, we obtain from (8) that

h′′(t) > 0 for all t ∈ R. Thus, h has a unique minimizer at a point to such
that h′(to) = 0; or, according to (7), at

to =

∫ b

a

f(x)g(x) dx∫ b

a

(g(x))2 dx

. (9)

For this value of t, the estimate in (5) holds true. �
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(b) Assume that

∫ b

a

(g(x))2 dx 6= 0, and let to be as in the previous part. Use

the observation h(to) > 0 to the deduce the inequality(∫ b

a

f(x)g(x) dx

)2

6
∫ b

a

(f(x))2 dx ·
∫ b

a

(g(x))2 dx. (10)

This leads to the Cauchy–Schwarz inequality∣∣∣∣∫ b

a

f(x)g(x) dx

∣∣∣∣ 6
√∫ b

a

(f(x))2 dx ·

√∫ b

a

(g(x))2 dx. (11)

Solution: From the definition of h(t) in (4) we see that

h(t) > 0, for all t ∈ R.

Thus, in particular,
h(to) > 0, (12)

or, in view of (6),∫ b

a

(f(x))2 dx− 2to

∫ b

a

f(x)g(x) dx+ t2o

∫ b

a

(g(x))2 dx > 0. (13)

Next, substitute the value of to in (9) into the estimate in (13) to obtain

∫ b

a

(f(x))2 dx− 2

(∫ b

a

f(x)g(x) dx

)2

∫ b

a

(g(x))2 dx

+

(∫ b

a

f(x)g(x) dx

)2

∫ b

a

(g(x))2 dx

> 0,

or ∫ b

a

(f(x))2 dx−

(∫ b

a

f(x)g(x) dx

)2

∫ b

a

(g(x))2 dx

> 0,

from which we get that(∫ b

a

f(x)g(x) dx

)2

6
∫ b

a

(f(x))2 dx

∫ b

a

(g(x))2 dx,

which is (10). Taking the positive square root on both sides of (10) then
yields (11). �
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(c) When does the inequality in part (b) yields equality?

Solution: Equality in the inequality in (10) occurs when equality in (12)
occurs; namely,

h(to) = 0,

or, using the definition of h in (4),∫ b

a

[f(x)− tog(x)]2 dx = 0. (14)

Consequently, since f and g are assumed to be continuous on [a, b], it
follows from (14) that

f(x) = tog(x), for all x ∈ [a, b].

Hence, equality in the Cauchy–Schwarz inequality occurs if and only if f
is a constant multiple of g. �

3. Let V =

{
y ∈ C1([0, 1],R)

∣∣∣ ∫ 1

0

(y′(x))2dx <∞
}
, and define J : V → R by

J(y) =
1

2

∫ 1

0

(y′(x))2dx for all y ∈ V. (15)

(a) Prove that J is Gâteaux differentiable and compute dJ(y; v) for y, v ∈ V .

Solution: For y and v in V , and t ∈ R, compute

J(y + tv) =
1

2

∫ 1

0

(y′(x) + tv′(x))2dx

=
1

2

∫ 1

0

(y′(x))2dx+ t

∫ 1

0

y′(x)v′(x)dx+
t2

2

∫ 1

0

(v′(x))2dx;

so that J(y + tv) is a quadratic polynomial in t. Hence, the map

t 7→ J(y + tv), for t ∈ R,

is differentiable with derivative

d

dt
[J(y + tv)] =

∫ 1

0

y′(x)v′(x)dx+ t

∫ 1

0

(v′(x))2dx, for all t ∈ R.
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Consequently, J is Gâteaux differentiable at every y ∈ V in the direction
of v in V , with Gâteaux derivative

dJ(y; v) =
d

dt
[J(y + tv)]

∣∣∣
t=0

=

∫ 1

0

y′(x)v′(x)dx, (16)

for y, v ∈ V .

�

(b) Prove that J is convex but not strictly convex.

Solution: For y and v in V , compute

J(y + v) =
1

2

∫ 1

0

(y′(x) + v′(x))2dx

=
1

2

∫ 1

0

(y′(x))2dx+

∫ 1

0

y′(x)v′(x)dx+
1

2

∫ 1

0

(v′(x))2dx;

so that, in view of (16) and the definition of J in (15),

J(y + v) = J(y) + dJ(y; v) +
1

2

∫ 1

0

(v′(x))2dx. (17)

Consequently,

J(y + v) > J(y) + dJ(y; v), for y, v ∈ V, (18)

which shows that J is convex in V .

Now, in view of (17), equality in (18) holds if and only if∫ 1

0

(v′(x))2dx = 0;

so that, since v′ is continuous, v′(x) = 0 for all x ∈ [0, 1]. Thus, v(x) = c
for all x ∈ [0, 1], where c is a constnat not necessarily 0. Hence, J is not
strictly convex. �

4. Let f : R → R be a real valued function of a single variable, and assume that
f is twice differentiable with continuous second derivative f ′′ : R → R. Let
V = C1([a, b],R) and define J : V → R by

J(y) =

∫ b

a

f(y′(x)) dx, for all y ∈ V. (19)
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Put Vo = C1
o ([a, b],R) and define

A = {y ∈ C1[a, b] | y(a) = yo and y(b) = y1} (20)

for given real numbers yo and y1.

(a) Show that if f ′′(z) > 0 for all z ∈ R, then J is strictly convex in A.

Solution: By the arguments used in Example 4.1.3 in the lecture notes, we
can show that the the functional J defined in (19) is Gâteaux differentiable
for every y ∈ A in the direction of η ∈ Vo, with Gâteaux derivative given
by

dJ(y; η) =

∫ b

a

f ′(y′(x))η′(x) dx, for y ∈ A and η ∈ Vo, (21)

since f ′ : R→ R is a continuous function.

Since we are also assuming that the f ′′(z) > 0 for all z ∈ R, the arguments
used in Example 4.3.7 in the lecture notes can be used to show that

f(z + w) > f(z) + f ′(z)w, for all z, w ∈ R, (22)

with equality if and only if w = 0. (23)

It follows from (22), the definition of J in (19) and (21) that

J(y + η) > J(y) + dJ(y; η), for y ∈ A and η ∈ Vo, (24)

which shows that J is convex in A.

To show that J is strictly convex in A, assume that equality in (24) holds
true for some y ∈ A and η ∈ Vo. Then, using the definition of J in (19)
and the result in (21),∫ b

a

f(y′(x) + η′(x)) dx =

∫ b

a

f(y′(x)) dx+

∫ b

a

f ′(y′(x))η′(x) dx,

which we can rewrite as∫ b

a

[f(y′(x) + η′(x))− f(y′(x))− f ′(y′(x))η′(x)] dx = 0. (25)

It follows from the inequality in (22) that the integrand in (25) is nonneg-
ative. Hence, since f , f ′, y′ and η′ are continuous on [a, b], it follows from
(25) that

f(y′(x) + η′(x))− f(y′(x))− f ′(y′(x))η′(x) = 0, for all x ∈ [a, b].
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It then follows form (22) and (23) that

η′(x) = 0, for all x ∈ [a, b];

so that, η(x) = c for all x ∈ [a, b], where c is a constant. Now, since η ∈ Vo,
η(a) = 0; therefore, c = 0. Consequently, equality in (24) holds true if and
only if η(x) = 0 for all x ∈ [a, b]. This shows that J given in (19) is strictly
convex in A. �

(b) Give the Euler–Lagrange equation associated with J and, if possible, solve
it subject to the boundary conditions in A.

Solution: The Euler–Lagrange equation associated with the functional J
defined in (19) is

d

dx
[f ′(y′(x))] = 0, for x ∈ (a, b),

from which we get that

f ′(y′(x)) = C, for all x ∈ [a, b], (26)

and some constant C.

It follows from the assumptions that f ′′(z) > 0 for all z ∈ R, that f ′(z) is
a strictly increasing function of z. Consequently, we obtain from (26) that

y′(x) = c1, for all x ∈ [a, b], (27)

and some constant c1.

Integrating the equation in (27) we obtain that

y(x) = c1x+ c2, for all x ∈ [a, b], (28)

and some constants c1 and c2.

Using the assumption that yA, we see that y must also satisfy the condi-
tions

y(a) = yo and y(b) = y1, (29)

according to the definition of A in (20). Applying the boundary conditions
in (29) to the function in (28) we find that

c1 =
y1 − yo
b− a

and c3 =
byo − ay1

b− a
.

Thus, using the expression for y in (28),

y(x) =
y1 − yo
b− a

x+
byo − ay1

b− a
, for a 6 x 6 b. (30)

�
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(c) Find the unique minimizer of J in A.

Solution: The function in (30) is the unique minimizer of J in A because
J is strictly convex, as shown in part (a) of this problem. This assertion
follows from the convex minimization theorem proved in class and in the
lecture notes (see Theorem 4.4.1). �

5. Let F : R× R→ R denote a continuous function of two variables y and z. Let
V = C1([a, b],R) and define the functional

J(y) =

∫ b

a

F (y(x), y′(x))dx, for y ∈ V. (31)

(a) Assume that y(a) = yo and y(b) = y1 and assume that yo < y1. Make a
change of variables to express the functional in (31) in terms of an integral
with respect to y of the form

J(x) =

∫ y1

yo

G(y, x′(y))dy, for x ∈ C1([yo, y1],R). (32)

Express the function G in terms of F .

Solution: Assume that y′(x) 6= 0 for all x ∈ [a, b] and make a change of
variables to rewrite the integral in (31) as∫ b

a

F (y(x), y′(x))dx =

∫ y(b)

y(a)

F (y, y′(x))
dx

dy
dy,

where, by virtue of the Chain Rule,

dx

dy
=

1

dy

dx

,

or

x′ =
1

y′
,

where we have used x′ to denote x′(y) and y′ to denote y′(x). We then
have that ∫ b

a

F (y(x), y′(x))dx =

∫ y1

yo

F

(
y,

1

x′

)
x′ dy,

Thus, defining

G(y, z) = zF

(
y,

1

z

)
, for y ∈ R and z 6= 0. (33)
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We then have that∫ b

a

F (y(x), y′(x))dx =

∫ y1

yo

G(y, x′) dy,

which yields the expression in (32). This expresses the functional in (31) in
terms of x as a function of y for yo 6 y 6 y1. Thus, we have exchanged the
roles of the variables x and y. In (32) y is thought of as the independent
variable and x is the dependent variable. �

(b) Derive the Euler–Lagrange equation associated with the functional J given
in (32).

Solution: Thinking of y as the independent variable and of x as the de-
pendent variable, the Euler–Lagrange equation corresponding to the func-
tional in (32) is

d

dy
[Gz(y, x

′)] = Gx(y, x
′),

or
d

dy
[Gz(y, x

′)] = 0, (34)

since G(y, z) does not depend explicitly on x. �

(c) Solve the differential equation derived in the previous part and deduce
that, if y is a solution of the Euler–Lagrange equation associated with the
functional J given in (31), then

y′Fz(y, y
′)− F (y, y′) = C, (35)

for some constant C.

Solution: Integrate the differential equation in (34) to obtain

Gz(y, x
′) = c1, (36)

for some constant c1, where, according to (33),

Gz(y, z) = F

(
y,

1

z

)
+ zFz

(
y,

1

z

)
·
(
− 1

z2

)
,

where we have used the Product Rule and the Chain Rule; so that,

Gz(y, z) = F

(
y,

1

z

)
− 1

z
Fz

(
y,

1

z

)
. (37)
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Substituting x′ for z in (37) and using the fact that x′ =
1

y′
, we obtain

that
Gz(y, x

′) = F (y, y′)− y′Fz(y, y′). (38)

In view of (36) and (38), we see that (35) follows from (36) and (38) by
setting C = −c1. �

6. Let V denote a normed, linear space, and Vo a nontrivial subspace of V , and
Assume that J : V → R and J1 : V → R are Gâteaux differentiable in V along
any direction v ∈ Vo.

(a) Show that dJ(u; cv) = c dJ(u; v) for any c ∈ R.

Solution: Assume that J is Gâteaux differentiable at u ∈ V in the direc-

tion v ∈ Vo. Then, lim
t→0

J(u+ tv)− J(u)

t
exists and

lim
t→0

J(u+ tv)− J(u)

t
= dJ(u; v). (39)

Next, suppose that c 6= 0 and consider

J(u+ t(cv))− J(u)

t
= c · J(u+ (ct)v))− J(u)

ct
, for t 6= 0. (40)

Put r = ct; then, since we are assuming that c 6= 0,

t→ 0 if and only if r → 0.

We then get from (40) that

lim
t→0

J(u+ t(cv))− J(u)

t
= c · lim

r→0

J(u+ rv))− J(u)

r
;

so that, in view of (39),

dJ(u; cv) = c · dJ(u; v). (41)

Observe that (41) also holds true for c = 0; this follows from the fact
that dJ(u; 0) = 0, which can be seen to be true from the definition of the
Gâteaux derivative in (39). �
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(b) Show that J + J1 is Gâteaux differentiable at any u ∈ V in the direction
of v ∈ Vo, and

d(J + J1)(u; v) = dJ(u; v) + dJ1(u; v). (42)

Solution: Let u ∈ V , v ∈ Vo and assume that J and J1 are Gâteaux
differentiable at u in the direction of v. Then, the maps

t 7→ J(u+ tv), for t ∈ R,

and
t 7→ J1(u+ tv), for t ∈ R,

are differentiable at t = 0 and

dJ(u; v) =
d

dt
[J(u+ tv)]

∣∣∣
t=0

(43)

and

dJ1(u; v) =
d

dt
[J1(u+ tv)]

∣∣∣
t=0
. (44)

Now, by the definition of the sum of the functionals J and J1,

(J + J1)(u+ tv) = J(u+ tv) + J1(u+ tv), for t ∈ R,

so that, the map

t 7→ (J + J1)(u+ tv), for t ∈ R, (45)

is the sum of two differentiable functions of t; hence, the map in (45) is
differentiable at t = 0 and

d

dt
[(J + J1)(u+ tv)]

∣∣∣
t=0

=
d

dt
[J(u+ tv)]

∣∣∣
t=0

+
d

dt
[J1(u+ tv)]

∣∣∣
t=0
,

from which (42), by virtue of (43) and (44). �

7. Let V denote a normed, linear space, and Vo a nontrivial subspace of V , and A
a nonempty subset of V . Assume that J1 : V → R and J2 : V → R are Gâteaux
differentiable in V along any direction v ∈ Vo.
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(a) Show that if J1 and J2 are convex in A, then so are c2J1 and J1 + J2, for
any c ∈ R.

Solution: Assume that J1 : V → R and J2 : V → R are convex functionals
in A. Then,

J1(u+ v) > J1(u) + dJ1(u; v), for u ∈ A, v ∈ Vo with u+ v ∈ A, (46)

and

J2(u+ v) > J2(u) + dJ2(u; v), for u ∈ A, v ∈ Vo with u+ v ∈ A. (47)

Multiply on both sides of (46) by c2 to get

c2J1(u+ v) > c2J1(u) + c2dJ1(u; v), for u ∈ A, v ∈ Vo with u+ v ∈ A,

since c2 > 0. Then, since

d(c2J(u; v)) = c2dJ(u; v),

we get that

c2J1(u+ v) > c2J1(u) + d(vJ1(u; v)), for u ∈ A, v ∈ Vo with u+ v ∈ A,

which shows that c2J1 is convex in A.

Next, use the definition of the sum of functionals to compute, for u ∈ A
and v ∈ Vo with u+ v ∈ A,

(J1 + J2)(u+ v) = J1(u+ v) + J2(u+ v);

so that, in view of (46) and (47),

(J1 + J2)(u+ v) > J1(u) + dJ1(u; v) + J2(u) + dJ2(u; v)

= J1(u) + J2(u) + dJ1(u; v) + dJ2(u; v)

= (J1 + J2)(u) + d(J1 + J2)(u; v),

where we have used the result (42) in part (b) Problem 6. Thus,

(J1 + J2)(u+ v) > (J1 + J2)(u) + d(J1 + J2)(u; v), (48)

for u ∈ A, v ∈ Vo with u+ v ∈ A. Hence, J1 + J2 is convex in A. �
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(b) Show that if J1 is convex in A and J2 is strictly convex in A, then J1 + J2

is strictly convex in A.

Solution: Assume J1 : V → R is convex in A and J2 : V → R is strictly
convex in A. Then, the inequalities in (46) and (47) hold true, and equality
in (47) holds true if and only if v = 0.

We have already seen in part (a) that J1 +J2 is convex in A, To show that
J1 + J2 is also strictly convex in A, suppose that equality in (48) holds
true; so that,

(J1 + J2)(u+ v) = (J1 + J2)(u) + d(J1 + J2)(u; v),

for u ∈ A, and v ∈ Vo with u+ v ∈ A. Then, using (42) and the definition
of the sum of two functionals,

J1(u+ v) + J2(u+ v) = J1(u) + J2(u) + dJ1(u; v) + dJ2(u; v),

which we can rewrite as

J2(u+ v)− J2(u)− dJ2(u; v) = J1(u) + dJ1(u; v)− J1(u+ v). (49)

It follows from the inequalities in (47) and (46) that the left–hand side of
(49) is greater that or equal to 0, while the right–hand side is less than or
equal to 0. Consequently,

J2(u+ v)− J2(u)− dJ2(u; v) = 0.

Therefore, since J2 is strictly convex in A, it follows that v = 0. We have
thus shown that, if equality in (48) holds true, then v = 0. Conversely, we
can see that if v = 0 then equality in (48) holds true. Hence, J1 + J2 is
strictly convex in A, if J2 is strictly convex in A. �

8. Let J : A → R be defined by

J(y) =

∫ 1/2

0

[y(x) +
√

1 + (y′(x))2] dx, for all y ∈ A, (50)

where

A = {y ∈ C1([0, 1/2],R) | y(0) = −1 and y(1/2) = −
√

3/2}. (51)

Verify that J is strictly convex and find, if possible, the unique minimizing
function for J in A.



Math 188. Rumbos Fall 2017 14

Solution: Write the functional J in (50) as the sum of two functionals J1 : V →
R and J2 : V → R, where V = C1([0, 1/2],R) and

J1(y) =

∫ 1/2

0

y(x) dx, for y ∈ V, (52)

and

J2(y) =

∫ 1/2

0

√
1 + (y′(x))2 dx, for y ∈ V. (53)

In view of (50), (52) and (53), we see that

J(y) = J1(y) + J2(y), for all y ∈ V.

Observe that J1 is a linear functional; hence, J1 is convex (but not strictly
convex). On the other hand, J2 is strictly convex; this is a consequence of the
result in part (a) of Problem 4 in this set of problems, with f(z) =

√
1 + z2

for all z ∈ R. Hence, by the result in part (b) in Problem 7, the functional J
defined in (50) is strictly convex in A.

To find the unique minimizer in A of the functional J defined in (50), we first
solve the Euler–Lagrange equation associated with J . In this case, the function
F (x, y, z) corresponding to J is

F (x, y, z) = y +
√

1 + z2, for x ∈ [0, 1/2], y ∈ R, and z ∈ R.

The partial derivatives of F with respect to y and z, respectively, are

Fy(x, y, z) = 1 and Fz(x, y, z) =
z√

1 + z2
, for (x, y, z) ∈ [0, 1/2]× R× R;

so that, the Euler–Lagrange equation associated with the functional J given in
(50) is

d

dx

(
y′√

1 + (y′)2

)
= 1. (54)

Integrating the equation in (54) yields

y′√
1 + (y′)2

= x+ c1, for 0 6 x 6
1

2
, (55)

and for some constant of integration c1. Solving the equation in (55) for y′, we
obtain

y′ =
x+ c1√

1− (x+ c1)2
. (56)
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The differential equation in (56) can be integrated to yield

y(x) = −
√

1− (x+ c1)2 + c2, for 0 6 x 6
1

2
, (57)

and another constant of integration c2.

Since we are looking for a minimizer of J in A, where A is given in (51), the
function in (57) must satisfy the boundary conditions

y(0) = −1 and y(1/2) = −
√

3

4
. (58)

Thus, we must have that c1 = c2 = 0 in (57) for y to satisfy the boundary
conditions in (58). Consequently,

y(x) = −
√

1− x2, for 0 6 x 6
1

2
. (59)

By the Convex Minimization Theorem proved in class and in the lecture notes,
the function y ∈ A given in (59) is the unique minimizer of the functional J
defined in (50) over A given in (51). �

9. Let J : A → R be defined by

J(y) =

∫ 2

1

[y(x) + xy′(x)] dx, for all y ∈ A, (60)

where
A = {y ∈ C1[1, 2] | y(1) = 1 and y(2) = 2}. (61)

Verify that J is convex, but not strictly convex in A. Can you find more than
one function which minimizes J in A?

Solution: Observe that the functional J defined in (60) and (61) is a linear
functional in V = C1([1, 2],R). Hence, J is is convex, but not strictly convex
in A.

Observe also that, for any y ∈ A,

J(y) =

∫ 2

1

d

dx
[xy(x)] dx,

where we have used the Product Rule; so that, by the Fundamental Theorem
of Calculus,

J(y) = xy(x)
∣∣∣2
1

= 2y(2)− y(1).
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Hence, using the definition of A in (61),

J(y) = 2(2)− 1 = 3, for all y ∈ A; ;

so that J is constant in A. Hence, every function in A is a minimizer of J in
A. �


