Assignment #2

Due on Friday February 1, 2008

Read Section 1.4 on Set Theory, pp. 6–11, in DeGroot and Schervish.

Background and Definitions

• Recall that a σ-field, \mathcal{B}, is a collection of subsets of a sample space \mathcal{C}, referred to as events, which satisfy:

 (1) $\emptyset \in \mathcal{B}$ (\emptyset denotes the empty set)
 (2) If $E \in \mathcal{B}$, then its complement, E^c, is also an element of \mathcal{B}.
 (3) If $\{E_1, E_2, E_3 \ldots\}$ is a sequence of events, then

\[
E_1 \cup E_2 \cup E_3 \cup \ldots = \bigcup_{k=1}^{\infty} E_k \in \mathcal{B}.
\]

• Let \mathcal{S} denote a collection of subsets of a sample space \mathcal{C}. The σ–field generated by \mathcal{S}, denoted by $\mathcal{B}(\mathcal{S})$, is the smallest σ–field in \mathcal{C} which contains \mathcal{S}.

• \mathcal{B}_b denotes the Borel σ–field of the real line, \mathbb{R}. This is the σ–field generated by the semi–infinite intervals

\[(-\infty, b], \quad \text{for } b \in \mathbb{R}.\]

Do the following problems

1. Let A, B and C be subsets of a sample space \mathcal{C}. Prove the following

 (a) If $A \subseteq C$ and $B \subseteq C$, then $A \cup B \subseteq C$.
 (b) If $C \subseteq A$ and $C \subseteq B$, then $C \subseteq A \cap B$.

2. Let \mathcal{C} be a sample space and \mathcal{B} be a σ–field of subsets of \mathcal{C}. Prove that if $\{E_1, E_2, E_3 \ldots\}$ is a sequence of events in \mathcal{B}, then

\[
\bigcap_{k=1}^{\infty} E_k \in \mathcal{B}.
\]

Hint: Use De Morgan’s Laws.
3. Let C be a sample space and B be a σ–field of subsets of C. For fixed $B \in B$ define the collection of subsets

$$
B_B = \{ D \subset C \mid D = E \cap B \text{ for some } E \in B \}.
$$

Show that B_B is a σ–field.

Note: In this case, the complement of $D \in B_B$ has to be understood as $B \setminus D$; that is, the complement relative to B. The σ–field B_B is the σ–field B restricted to B, or *conditioned on* B.

4. Let S denote the collection of all bounded, open intervals (a, b), where a and b are real numbers with $a < b$. Show that

$$
B(S) = B_o;
$$

that is, the σ–field generated by bounded open intervals is the Borel σ–field.

Hints:

- We have already seen in the lecture that B_o contains all bounded open intervals.
- Observe also that the semi–infinite open interval (b, ∞) can be expressed as the union of the sequence of bounded intervals (b, k), for $k = 1, 2, 3, \ldots$

5. Show that for every real number a, the singleton $\{ a \}$ is in the Borel σ–field B_o.

Hint: Express $\{ a \}$ as an intersection of a sequence of open intervals.