Solutions to Assignment #18

1. Let a denote a real number and X_a be a discrete random variable with pmf

$$p_{X_a}(x) = \begin{cases} 1 & \text{if } x = a; \\ 0 & \text{elsewhere.} \end{cases}$$

(a) Compute the cdf for X_a and sketch its graph.
(b) Compute the mgf for X_a and determine $E(X_a)$ and $\text{var}(X_a)$.

Solution:

(a) For $x < a$, we get that

$$F_{X_a}(x) = \Pr(X_a \leq x) = 0.$$

If $x \geq a$, then

$$F_{X_a}(x) = \Pr(X_a \leq x) = \Pr(X_a = a) = 1.$$

Thus,

$$F_{X_a}(x) = \begin{cases} 0 & \text{if } x < a, \\ 1 & \text{if } x \geq a. \end{cases}$$

The graph of F_{X_a} is pictured in Figure 1.

![Figure 1: Cumulative Distribution Function for X_a](image)

(b) The mgf for X_a is

$$\psi_{X_a}(t) = E(e^{tX_a}) = e^{ta} p_{X_a}(a) = e^{at} \quad \text{for all } t \in \mathbb{R}.$$

Differentiating with respect to t we obtain

$$\psi'_{X_a}(t) = ae^{at} \quad \text{for all } t \in \mathbb{R},$$
and
\[\psi''_{X_a}(t) = a^2 e^{at} \text{ for all } t \in \mathbb{R}. \]
It then follows that the expected value of \(X_a \) is

\[E(X_a) = \psi'_{X_a}(0) = a; \]

its second moment is

\[E(X_a^2) = \psi''_{X_a}(0) = a^2; \]

Thus, the variance of \(X_a \) is

\[\text{var}(X_a) = E(X_a^2) - a^2 = 0. \]

\[\square \]

2. Let \((X_k)\) denote a sequence of independent identically distributed random variables such that \(X_k \sim \text{Normal}(\mu, \sigma^2) \) for every \(k = 1, 2, \ldots \), and for some \(\mu \in \mathbb{R} \) and \(\sigma > 0 \). For each \(n \geq 1 \), define

\[\bar{X}_n = \frac{X_1 + X_2 + \cdots + X_n}{n}. \]

(a) Determine the mgf, \(\psi_{\bar{X}_n}(t) \), for \(\bar{X}_n \), and compute \(\lim_{n \to \infty} \psi_{\bar{X}_n}(t) \).

(b) Find the limiting distribution of \(\bar{X}_n \) as \(n \to \infty \). (Hint: Compare your answer in part (a) to your answer in part (b) of problem 1.)

Solution:

(a) Compute

\[\psi_{\bar{X}_n}(t) = E(e^{t\bar{X}_n}) \]

\[= \psi_{X_1 + X_2 + \cdots + X_n} \left(\frac{t}{n} \right) \]

\[= \psi_{X_1} \left(\frac{t}{n} \right) \psi_{X_2} \left(\frac{t}{n} \right) \cdots \psi_{X_n} \left(\frac{t}{n} \right), \]
since the X_i's are linearly independent. Thus, given the X_i's are identically distributed Normal(μ, σ^2),

$$
\psi_{X_n}(t) = \left[\psi_{X_1}\left(\frac{t}{n}\right) \right]^n = \left[e^{\mu(t/n) + \sigma^2(t/n)^2/2} \right]^n = e^{\mu t + \sigma^2 t^2/2n}.
$$

We then get that for $t \neq 0$,

$$
\lim_{n \to \infty} \psi_{X_n}(t) = e^{\mu t}.
$$

On the other hand, if $t = 0$, $\psi_{X_n}(0) = 1$ for all n. We therefore get that

$$
\lim_{n \to \infty} \psi_{X_n}(t) = e^{\mu t} \quad \text{for all } t \in \mathbb{R}.
$$

(b) By problem 1, the limit obtained in the previous part is the mgf of the discrete random variable X_μ which has pmf

$$
p_{X_\mu}(x) = \begin{cases}
1 & \text{if } x = \mu; \\
0 & \text{elsewhere.}
\end{cases}
$$

By the mgf Convergence Theorem, the sequence of sample means, (\overline{X}_n), converges in distribution to X_μ. In other words, for every $\varepsilon > 0$,

$$
\lim_{n \to \infty} \Pr(\overline{X}_n \leq \mu + \varepsilon) = \Pr(X_\mu) \leq \mu + \varepsilon) = 1,
$$

while

$$
\lim_{n \to \infty} \Pr(\overline{X}_n \leq \mu - \varepsilon) = \Pr(X_\mu) \leq \mu - \varepsilon) = 0.
$$

It then follows that

$$
\lim_{n \to \infty} \Pr(\mu - \varepsilon < \overline{X}_n \leq \mu + \varepsilon) = 1
$$

for all $\varepsilon > 0$. Thus, with probability 1, the sample mean will within an arbitrary distance of the mean of the distribution as the sample size increases to infinity.
3. Let \((X_k)\) and \(\bar{X}_n\) be defined as in the previous problem. Define \(Z_n = \frac{\bar{X}_n - \mu}{\sigma / \sqrt{n}}\) for all \(n \geq 1\).

(a) Determine the mgf, \(\psi_{Z_n}(t)\), for \(Z_n\), and compute \(\lim_{n \to \infty} \psi_{Z_n}(t)\).

(b) Find the limiting distribution of \(\bar{Z}_n\) as \(n \to \infty\).

Solution:

(a) Compute

\[
\psi_{Z_n}(t) = E(e^{tZ_n}) \\
= E(e^{(t\sqrt{n}/\sigma)\bar{X}_n} e^{-\mu t \sqrt{n}/\sigma}) \\
= e^{-\mu t \sqrt{n}/\sigma} \psi_{X_n} \left(\frac{t\sqrt{n}}{\sigma} \right) \\
= e^{-\mu t \sqrt{n}/\sigma} e^{\mu(t\sqrt{n}/\sigma)+\sigma^2(t\sqrt{n}/\sigma)^2/2n},
\]

where we have used the expression for the mgf of \(\bar{X}_n\) computed in the previous problem. It then follows that

\[
\psi_{Z_n}(t) = e^{\sigma^2(t\sqrt{n}/\sigma)^2/2n} = e^{t^2/2}
\]

for all \(n = 1, 2, 3, \ldots\) It then follows that

\[
\lim_{n \to \infty} \psi_{Z_n}(t) = e^{t^2/2} \quad \text{for all } t \in \mathbb{R}.
\]

(b) Note that the limit obtained in the previous part is the mgf of the standard normal random variable \(Z \sim \text{Normal}(0,1)\). It then follows, by the mgf Convergence Theorem that \(Z_n\) converges in distribution to \(Z \sim \text{Normal}(0,1)\) as \(n \to \infty\).
4. Let \((Y_n)\) be a sequence of discrete random variables having pmfs

\[
p_{Y_n}(y) = \begin{cases}
1 & \text{if } y = n, \\
0 & \text{elsewhere.}
\end{cases}
\]

Compute the mgf of \(Y_n\) for each \(n = 1, 2, 3, \ldots\)

Does \(\lim_{n \to \infty} \psi_{Y_n}(t)\) exist for any \(t\) in an open interval around 0?

Does the sequence \((Y_n)\) have a limiting distribution? Justify your answer.

Solution: Compute \(\psi_{Y_n}(t) = E(e^{tY_n}) = e^{tn}p_{Y_n}(n) = e^{nt}\), for all \(t \in \mathbb{R}\).

Observe that for \(t > 0\), \(\psi_{Y_n}(t) \to \infty\) as \(n \to \infty\). Therefore, \(\lim_{n \to \infty} \psi_{Y_n}(t)\) does not exist for \(t\) in an open interval around 0.

Now, for any \(y \in \mathbb{R}\), there exists a natural number \(n_0\) such that \(n \geq n_0\) implies that \(x < n\). Consequently, for all \(n \geq n_0\),

\[
\Pr(Y_n \leq y) = 0.
\]

where therefore conclude that

\[
\lim_{n \to \infty} \Pr(Y_n \leq y) = 0, \quad \text{for all } y \in \mathbb{R}.
\]

However, 0 cannot be a cdf for any random variable. Hence, \((Y_n)\) does not have a limiting distribution. □

5. Let \(q = 0.95\) denote the probability that a person, in certain age group, lives at least 5 years.

(a) If we observe 60 people from that group and assume independence, what is the probability that at least 56 of them live 5 years or more?

(b) Find and approximation to the result of part (a) using the Poisson distribution.

Solution:
(a) Let \(X \) denote the number of people from the group that will live 5 years or more. Then, \(X \sim \text{Binomial}(q, 60) \). Consequently, the probability that at least 56 of them live 5 years or more is

\[
\Pr(X \geq 56) = \sum_{k=56}^{60} \binom{60}{k} q^k (1 - q)^{60-k}.
\]

Note that we can also compute this probability as

\[
\Pr(X \geq 56) = 1 - \Pr(X \leq 55) = 1 - F_X(55).
\]

Using MS-Excel to make this calculation we get that

\[
\Pr(X \geq 56) \approx 0.82 \text{ or } 82\%.
\]

(b) The Poisson approximation to the Binomial(\(p, n \)) is appropriate when \(p \) is small and \(n \) is large. Thus, instead of looking at the probability, \(q \), of living 5 or more years, we look at the complementary probability \(p = 1 - q = 0.05 \) of living less than five years. If we let \(Y \) denote the number of people from the group that will live less than five years, then \(Y \sim \text{Binomial}(p, 60) \). The event \((X \geq 56)\) is then equivalent to \((Y \leq 4)\), and so we are interested in approximating

\[
\Pr(Y \leq 4)
\]

by a Poisson(\(\lambda \)) distribution with \(\lambda = np = 3 \). We then get that

\[
\Pr(Y \leq 4) \approx \sum_{k=0}^{4} \frac{3^k}{k!} e^{-3}
\]

\[
= e^{-3} + 3e^{-3} + \frac{9}{2}e^{-3} + \frac{27}{6}e^{-3} + \frac{81}{24}e^{-3}
\]

\[
\approx 0.82 \text{ or } 82\%.
\]

Thus, \(\Pr(X \geq 56) \approx 0.82 \text{ or } 82\% \) as in part (a). \(\square \)