Solutions to Assignment #2

1. Let \(A, B \) and \(C \) be subsets of a sample space \(C \). Prove the following

(a) If \(A \subseteq C \) and \(B \subseteq C \), then \(A \cup B \subseteq C \).

(b) If \(C \subseteq A \) and \(C \subseteq B \), then \(C \subseteq A \cap B \).

Solution:

(a) *Proof:* If \(x \in A \cup B \), then either \(x \in A \) or \(x \in B \). If \(x \in A \) then \(x \in C \), since \(A \subseteq C \). Similarly, if \(x \in B \) then \(x \in C \) since \(B \subseteq C \). In either case, \(x \in C \). We have therefore shown that
\[
x \in A \cup B \Rightarrow x \in C;
\]
that is, \(A \cup B \subseteq C \).

(b) *Proof:* If \(x \in C \), then \(x \in A \) and \(x \in B \) since both \(c \subseteq A \) and \(C \subseteq B \) are assumed to be true. It then follows that \(x \in A \cap B \). We have thus shown that
\[
x \in C \Rightarrow x \in A \cap B;
\]
that is, \(C \subseteq A \cap B \).

2. Let \(\mathcal{C} \) be a sample space and \(\mathcal{B} \) be a \(\sigma \)-field of subsets of \(\mathcal{C} \). Prove that if \(\{E_1, E_2, E_3, \ldots\} \) is a sequence of events in \(\mathcal{B} \), then
\[
\bigcap_{k=1}^{\infty} E_k \in \mathcal{B}.
\]

Hint: Use De Morgan’s Laws.

Proof: Let \(E_1, E_2, E_3, \ldots \) be a sequence of events in \(\mathcal{B} \). Then, \(E_1^c, E_2^c, E_3^c, \ldots \) are also in \(\mathcal{B} \), and therefore
\[
\bigcup_{k=1}^{\infty} E_k^c \in \mathcal{B},
\]
and consequently,
\[
\left(\bigcup_{k=1}^{\infty} E_k^c \right)^c \in \mathcal{B}.
\]
It then follows by De Morgan’s laws that
\[\bigcap_{k=1}^{\infty} (E_k^c)^c \in \mathcal{B}, \]
or
\[\bigcap_{k=1}^{\infty} E_k \in \mathcal{B}. \]

3. Let \(\mathcal{C} \) be a sample space and \(\mathcal{B} \) be a \(\sigma \)-field of subsets of \(\mathcal{C} \). For fixed \(B \in \mathcal{B} \) define the collection of subsets

\[\mathcal{B}_B = \{ D \subset \mathcal{C} \mid D = E \cap B \text{ for some } E \in \mathcal{B} \}. \]

Show that \(\mathcal{B}_B \) is a \(\sigma \)-field.

Note: In this case, the complement of \(D \in \mathcal{B}_B \) has to be understood as \(B \setminus D \); that is, the complement relative to \(B \). The \(\sigma \)-field \(\mathcal{B}_B \) is the \(\sigma \)-field \(\mathcal{B} \) restricted to \(B \), or *conditioned on* \(B \).

Solution: We verify that \(\mathcal{B}_B \) satisfies the three properties of a \(\sigma \)-field.

(i) Observe that \(\emptyset = \emptyset \cap B \), where \(\emptyset \in \mathcal{B} \). Thus, \(\emptyset \in \mathcal{B}_B \).

(ii) Let \(D \in \mathcal{B}_B \). Then,

\[D = E \cap B \text{ for some } E \in \mathcal{B}. \]

Then, the complement of \(D \) relative to \(B \) is

\[
B \setminus D = B \setminus (E \cap B) \\
= B \cap (E \cap B)^c \\
= B \cap (E^c \cup B^c) \\
= (B \cap E^c) \cup (B \cap B^c) \\
= (B \cap E^c) \cup \emptyset \\
= B \cap E^c.
\]

Thus, \(B \setminus D = E^c \cap B \), where \(E^c \in \mathcal{B} \). It then follows that \(B \setminus D \in \mathcal{B}_B \).
(iii) Let D_1, D_2, D_3, \ldots denote a sequence of events in \mathcal{B}_B. Then, there
exists a sequence E_1, E_2, E_3, \ldots in \mathcal{B} such that $D_k = E_k \cap B$ for all $k = 1, 2, 3, \ldots$
Then, by the distributive law,
\[
\bigcup_{k=1}^{\infty} D_k = \bigcup_{k=1}^{\infty} (E_k \cap B) = \left(\bigcup_{k=1}^{\infty} E_k \right) \cap B,
\]
where \(\bigcup_{k=1}^{\infty} E_k \in \mathcal{B} \).
It then follows that \(\bigcup_{k=1}^{\infty} D_k \in \mathcal{B}_B \).
\[\Box\]

4. Let \mathcal{S} denote the collection of all bounded, open intervals (a, b), where a and b
are real numbers with $a < b$. Show that \(\mathcal{B}(\mathcal{S}) = \mathcal{B}_o \),
that is, the σ–field generated by bounded open intervals is the Borel σ–field.

Hints:

- We have already seen in the lecture that \mathcal{B}_o contains all bounded open intervals.
- Observe also that the semi–infinite open interval (b, ∞) can be expressed
 as the union of the sequence of bounded intervals (b, k), for $k = 1, 2, 3, \ldots$

Proof: Let \mathcal{S} denote the collection of all bounded, open intervals (a, b), for
$a, b \in \mathbb{R}$ with $a < b$. We have proved in the lectures that
\(\mathcal{S} \subseteq \mathcal{B}_o \).
Since $\mathcal{B}(\mathcal{S})$ is the smallest σ–algebra which contains \mathcal{S}, it follows that
\(\mathcal{B}(\mathcal{S}) \subseteq \mathcal{B}_o \).
To show the reverse inclusion, first observe that, for any $b \in \mathbb{R}$,

$$(b, \infty) = \bigcup_{k=1}^{\infty} (b, k),$$

so that $(b, \infty) \in \mathcal{B}(S)$ for all $b \in \mathbb{R}$. It then follows that

$$(-\infty, b] = (b, \infty)^c \in \mathcal{B}(S) \quad \text{for all } b \in \mathbb{R}.$$

Since intervals of the form $(-\infty, b]$ generate the Borel σ–field \mathcal{B}_o, it follows that $\mathcal{B}_o \subseteq \mathcal{B}(S)$.

Combining this inclusion with the reverse inclusion that has been previously shown, we get that

$$\mathcal{B}(S) = \mathcal{B}_o.$$

\[\Box\]

5. Show that for every real number a, the singleton $\{a\}$ is in the Borel σ–field \mathcal{B}_o.

Hint: Express $\{a\}$ as an intersection of a sequence of open intervals.

Proof: We have seen in the previous problem that \mathcal{B}_o is also generated by the bounded, open intervals of the form (a, b). Thus, in view of Problem (1) in this set, we can prove that $\{a\}$ is in \mathcal{B}_o by expressing it as an intersection of a sequence of such intervals.

Consider the intervals

$$E_k = \left(a - \frac{1}{k}, a + \frac{1}{k}\right), \quad \text{for } k = 1, 2, 3, \ldots$$

We claim that

$$\{a\} = \bigcap_{k=1}^{\infty} E_k.$$

To see why this is so, let $x \in \bigcap_{k=1}^{\infty} E_k$. Then, $x \in E_k$ for all k; that is,

$$a - \frac{1}{k} < x < a + \frac{1}{k} \quad \text{for all } k.$$

Since

$$\lim_{k \to \infty} \left(a - \frac{1}{k}\right) = \lim_{k \to \infty} \left(a + \frac{1}{k}\right) = a,$$

it follows from the Sandwich Theorem that $x = a$. This proves the claim. \[\Box\]