Review Problems for Exam 1

1. Compute the (shortest) distance from the point \(P(4, 0, -7) \) in \(\mathbb{R}^3 \) to the plane given by
 \[
 4x - y - 3z = 12.
 \]

2. Compute the (shortest) distance from the point \(P(4, 0, -7) \) in \(\mathbb{R}^3 \) to the line given by the parametric equations
 \[
 \begin{cases}
 x &= -1 + 4t, \\
 y &= -7t, \\
 z &= 2 - t.
 \end{cases}
 \]

3. Compute the area of the triangle whose vertices in \(\mathbb{R}^3 \) are the points \((1, 1, 0), (2, 0, 1)\) and \((0, 3, 1)\)

4. Let \(v \) and \(w \) be two vectors in \(\mathbb{R}^3 \), and let \(\lambda \) be a scalar. Show that the area of the parallelogram determined by the vectors \(v \) and \(w + \lambda v \) is the same as that determined by \(v \) and \(w \).

5. Let \(\widehat{u} \) denote a unit vector in \(\mathbb{R}^n \) and \(P_{\widehat{u}}(v) \) denote the orthogonal projection of \(v \) along the direction of \(\widehat{u} \) for any vector \(v \in \mathbb{R}^n \). Use the Cauchy–Schwarz inequality to prove that the map
 \[
 v \mapsto P_{\widehat{u}}(v) \quad \text{for all} \quad v \in \mathbb{R}^n
 \]
 is a continuous map from \(\mathbb{R}^n \) to \(\mathbb{R}^n \).

6. Define the scalar field \(f: \mathbb{R}^n \rightarrow \mathbb{R} \) by \(f(v) = \frac{1}{2}\|v\|^2 \) for all \(v \in \mathbb{R}^n \). Show that \(f \) is differentiable on \(\mathbb{R}^n \) and compute the linear map \(Df(u): \mathbb{R}^n \rightarrow \mathbb{R} \) for all \(u \in \mathbb{R}^n \). What is the gradient of \(f \) at \(u \) for all \(x \in \mathbb{R}^n \)?

7. Let \(g: [0, \infty) \rightarrow \mathbb{R} \) be a differentiable, real–valued function of a single variable, and let \(f(x, y) = g(r) \) where \(r = \sqrt{x^2 + y^2} \).

 (a) Compute \(\frac{\partial r}{\partial x} \) in terms of \(x \) and \(r \), and \(\frac{\partial r}{\partial y} \) in terms of \(y \) and \(r \).

 (b) Compute \(\nabla f \) in terms of \(g'(r) \), \(r \) and the vector \(\mathbf{r} = \widehat{x}i + \widehat{y}j \).
8. Let \(f : U \to \mathbb{R} \) denote a scalar field defined on an open subset \(U \) of \(\mathbb{R}^n \), and let \(\hat{u} \) be a unit vector in \(\mathbb{R}^n \). If the limit
\[
\lim_{t \to 0} \frac{f(v + tu) - f(v)}{t}
\]
exists, we call it the direction derivative of \(f \) at \(v \) in the direction of the unit vector \(\hat{u} \). We denote it by \(D_{\hat{u}}f(v) \).

(a) Show that if \(f \) is differentiable at \(v \in U \), then, for any unit vector \(\hat{u} \) in \(\mathbb{R}^n \), the directional derivative of \(f \) in the direction of \(\hat{u} \) at \(v \) exists, and
\[
D_{\hat{u}}f(v) = \nabla f(v) \cdot \hat{u},
\]
where \(\nabla f(v) \) is the gradient of \(f \) at \(v \).

(b) Suppose that \(f : U \to \mathbb{R} \) is differentiable at \(v \in U \). Prove that if \(D_{\hat{u}}f(v) = 0 \) for every unit vector \(\hat{u} \) in \(\mathbb{R}^n \), then \(\nabla f(v) \) must be the zero vector.

(c) Suppose that \(f : U \to \mathbb{R} \) is differentiable at \(v \in U \). Use the Cauchy–Schwarz inequality to show that the largest value of \(D_{\hat{u}}f(v) \) is \(\| \nabla f(v) \| \) and it occurs when \(\hat{u} \) is in the direction of \(\nabla f(v) \).

9. The scalar field \(f : U \to \mathbb{R} \) is said to have a local minimum at \(x \in U \) if there exists \(r > 0 \) such that \(B_r(x) \subseteq U \) and
\[
f(x) \leq f(y) \quad \text{for every} \quad y \in B_r(x).
\]
Prove that if \(f \) is differentiable at \(x \in U \) and \(f \) has a local minimum at \(x \), then \(\nabla f(x) = 0 \), the zero vector in \(\mathbb{R}^n \).

10. Let \(I \) denote an open interval in \(\mathbb{R} \). Suppose that \(\sigma : I \to \mathbb{R}^n \) and \(\gamma : I \to \mathbb{R}^n \) are paths in \(\mathbb{R}^n \). Define a real valued function \(f : I \to \mathbb{R} \) of a single variable by
\[
f(t) = \sigma(t) \cdot \gamma(t) \quad \text{for all} \quad t \in I;
\]
that is, \(f(t) \) is the dot product of the two paths at \(t \).
Show that if \(\sigma \) and \(\gamma \) are both differentiable on \(I \), then so is \(f \), and
\[
f'(t) = \sigma'(t) \cdot \gamma(t) + \sigma(t) \cdot \gamma'(t) \quad \text{for all} \quad t \in I.
\]

11. Let \(\sigma : I \to \mathbb{R}^n \) denote a differentiable path in \(\mathbb{R}^n \). Show that if \(\| \sigma(t) \| \) is constant for all \(t \in I \), then \(\sigma'(t) \) is orthogonal to \(\sigma(t) \) for all \(t \in I \).
12. A particle is following a path in three–dimensional space given by

\[\sigma(t) = (e^t, e^{-t}, 1 - t) \quad \text{for} \quad t \in \mathbb{R}. \]

At time \(t_0 = 1 \), the particle flies off on a tangent.

(a) Where will the particle be at time \(t_1 = 2 \)?

(b) Will the particle ever hit the \(xy \)–plane? If so, find the location on the \(xy \) plane where the particle hits.

13. Let \(U \) denote an open and convex subset of \(\mathbb{R}^n \). Suppose that \(f: U \to \mathbb{R} \) is differentiable at every \(x \in U \). Fix \(x \) and \(y \) in \(U \), and define \(g: [0, 1] \to \mathbb{R} \) by

\[g(t) = f(x + t(y - x)) \quad \text{for} \quad 0 \leq t \leq 1. \]

(a) Explain why the function \(g \) is well defined.

(b) Show that \(g \) is differentiable on \((0, 1)\) and that

\[g'(t) = \nabla f(x + t(y - x)) \cdot (y - x) \quad \text{for} \quad 0 < t < 1. \]

(\textit{Suggestion:} Consider \(\frac{g(t + h) - g(t)}{h} = \frac{f(x + t(y - x) + h(y - x)) - f(x + t(y - x))}{h} \)

and apply the definition of differentiability of \(f \) at the point \(x + t(y - x) \).)

(c) Use the Mean Value Theorem for derivatives to show that there exists a point \(z \) is the line segment connecting \(x \) to \(y \) such that

\[f(y) - f(x) = D_{\hat{u}} f(z) \| y - x \|, \]

where \(\hat{u} \) is the unit vector in the direction of the vector \(y - x \); that is, \(\hat{u} = \frac{1}{\| y - x \|} (y - x) \).

(\textit{Hint:} Observe that \(g(1) - g(0) = f(y) - f(x) \).)

14. Prove that if \(U \) is an open and convex subset of \(\mathbb{R}^n \), and \(f: U \to \mathbb{R} \) is differentiable on \(U \) with \(\nabla f(v) = 0 \) for all \(v \in U \), then \(f \) must be a constant function.