Assignment #11
Due on Monday, March 2, 2009

Read Section 3.6 on Coordinates in Messer (pp. 123–127).

Background and Definitions

• (Ordered Basis). Let W be a subspace of \mathbb{R}^n of dimension k and let B denote a basis for W. If the elements in B are listed in a specified order: $B = \{w_1, w_2, \ldots, w_k\}$, then B is called an ordered basis. In this sense, the basis $B_1 = \{w_2, w_1, \ldots, w_k\}$ is different from B even though, as sets, B and B_1 are the same; that is, the contain the same elements.

• (Coordinates Relative to a Basis). Let W be a subspace of \mathbb{R}^n and

$$B = \{w_1, w_2, \ldots, w_k\}$$

be an ordered basis for W. Given any vector, v, in W, the coordinates of v relative to the basis B, are the unique set of scalars c_1, c_2, \ldots, c_k such that

$$v = c_1w_1 + c_2w_2 + \cdots + c_kw_k.$$

We denote the coordinates of v relative to the basis B by the symbol $[v]_B$ and write $[v]_B = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_k \end{pmatrix}$. The vector $[v]_B$ in \mathbb{R}^k is also called the coordinates vector for v with respect to the basis B.

Do the following problems

1. Let $W = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \mid 3x - 2y + z = 0 \right\}$.

 (a) Show that the set $B = \left\{ \begin{pmatrix} 1 \\ 0 \\ -3 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} \right\}$ is a basis for W.

 (b) Let $v = \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix}$. Show that $v \in W$ and compute $[v]_B$.
2. Suppose that B is an ordered basis for \mathbb{R}^2 satisfying
\[
\begin{pmatrix}
3 \\
2
\end{pmatrix}
_B = \begin{pmatrix}
1 \\
1
\end{pmatrix}
\quad \text{and} \quad
\begin{pmatrix}
-1 \\
4
\end{pmatrix}
_B = \begin{pmatrix}
2 \\
1
\end{pmatrix}.
\]
Determine the two vectors in the basis B.

3. Find a condition on the scalars a, b, c and d so that the columns of the matrix
\[
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}
\]
are linearly independent in \mathbb{R}^2.

Suggestion: Consider the cases $a = 0$ and $a \neq 0$ separately.

4. Let the matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ satisfy the condition you discovered in Problem 3. Prove that the columns of A span \mathbb{R}^2.

5. Let the matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ satisfy the condition you discovered in Problem 3 and denote the columns of A by C_1 and C_2, respectively; that is,
\[
C_1 = \begin{pmatrix} a \\ c \end{pmatrix} \quad \text{and} \quad
C_2 = \begin{pmatrix} b \\ d \end{pmatrix}.
\]
Find the coordinates of any vector $v = \begin{pmatrix} x \\ y \end{pmatrix}$ in \mathbb{R}^2 with respect to the ordered basis $B = \{C_1, C_2\}$.