Assignment #5

Due on Monday, February 9, 2009

Read Section 1.8 on Subspaces in Messer (pp. 39–44).
Read Section 3.2 on Span in Messer (pp. 97–102).

Background and Definitions

(Spans). For any subset S of \mathbb{R}^n, span(S) is the smallest subspace of \mathbb{R}^n which contains S; that is,

(i) span(S) is a subspace of \mathbb{R}^n;
(ii) $S \subseteq$ span(S); and
(iii) for any subspace, W, of \mathbb{R}^n such that $S \subseteq W$, span(S) $\subseteq W$.

Do the following problems

1. Let S_1 and S_2 denote two subsets of \mathbb{R}^n such that $S_1 \subseteq S_2$.
 (a) Prove that span(S_1) \subseteq span(S_2).
 (b) Prove that if S_1 spans \mathbb{R}^n, then span(S_2) = \mathbb{R}^n.

2. Let $S = \{v_1, v_2, \ldots, v_k\}$, where be v_1, v_2, \ldots, v_k are vectors in \mathbb{R}^n. The symbol $S\backslash\{v_j\}$ denotes the set S with v_j removed from the set, for $j \in \{1, 2, \ldots, k\}$.
 Suppose that $v_j \in$ span($S\backslash\{v_j\}$) for some j in $\{1, 2, \ldots, k\}$. Prove that span($S\backslash\{v_j\}$) = span(S).

3. Suppose that W is a subspace of \mathbb{R}^n and that $v_1, v_2, \ldots, v_k \in W$. Prove that span$\{v_1, v_2, \ldots, v_k\} \subseteq W$.

4. Let W be a subspace of \mathbb{R}^n. Prove that if the set $\{v, w\}$ spans W, then the set $\{v, v + w\}$ also spans W.

5. Let W be the solution set of the homogeneous system

\[
\begin{align*}
-x_1 + 2x_2 - 3x_3 &= 0 \\
2x_1 - x_2 + 4x_3 &= 0.
\end{align*}
\]

Solve the system to determine W, and find a set, S, of vectors in \mathbb{R}^3 such that $W = \text{span}(S)$.
Deduce, therefore, that W is a subspace of \mathbb{R}^3.