Solutions to Review Problems for Exam 1

1. Consider the set $B = \left\{ \begin{pmatrix} 1 \\ 1 \\ \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ \end{pmatrix} \right\}$.

(a) Show that B is a basis for \mathbb{R}^2.

Proof: Given that $\text{dim}(\mathbb{R}^2) = 2$ and that B contains two vectors, to prove that B is a basis for \mathbb{R}^2, it suffices to prove that B is linearly independent. Thus, consider the vector equation

$$c_1 \begin{pmatrix} 1 \\ 1 \\ \end{pmatrix} + c_2 \begin{pmatrix} -1 \\ 1 \\ \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \end{pmatrix},$$

which is equivalent to the system

$$\begin{cases} c_1 - c_2 = 0 \\ c_1 + c_2 = 0. \end{cases}$$

The system in (2) can be solved to yield the unique solution $c_1 = c_2 = 0$. Hence, the vector equation in (1) has only the trivial solution, and therefore B is linearly independent.

(b) Give the coordinates of the vector $v = \begin{pmatrix} 1 \\ 0 \\ \end{pmatrix}$ relative to B. Interpret your result geometrically.

Solution: We look for scalars, c_1 and c_2, such that

$$c_1 \begin{pmatrix} 1 \\ 1 \\ \end{pmatrix} + c_2 \begin{pmatrix} -1 \\ 1 \\ \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ \end{pmatrix},$$

This is equivalent to solving the system

$$\begin{cases} c_1 - c_2 = 1 \\ c_1 + c_2 = 0. \end{cases}$$

To solve this system, we may reduce the corresponding augmented matrix,

$$\begin{pmatrix} 1 & -1 & | & 1 \\ 1 & 1 & | & 0 \end{pmatrix},$$

to

$$\begin{pmatrix} 1 & 0 & | & 1/2 \\ 0 & 1 & | & -1/2 \end{pmatrix}.$$
We therefore get that the coordinate vector of \(\begin{pmatrix} 1 \\ 0 \end{pmatrix} \) relative to \(B \) is
\[
\begin{pmatrix} 1 \\ 0 \end{pmatrix}
\begin{pmatrix} 1/2 \\ -1/2 \end{pmatrix}.
\]
Denote the vectors in \(B \) by \(v_1 \) and \(v_2 \), respectively and in that order, and denote the vector \(\begin{pmatrix} 1 \\ 0 \end{pmatrix} \) by \(v \). Figure 1 shows the vector \(v \) as the sum of the vectors \(\frac{1}{2}v_1 \) and \(-\frac{1}{2}v_2 \).

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{coordinates.png}
\caption{Coordinates relative to \(B \)}
\end{figure}

2. Give a basis for the span of the following set of vectors in \(\mathbb{R}^4 \)

\[
\left\{ \begin{pmatrix} 1 \\ -1 \\ 1 \\ 1 \end{pmatrix} , \begin{pmatrix} -2 \\ 0 \\ 3 \\ 0 \end{pmatrix} , \begin{pmatrix} 1 \\ -3 \\ 6 \\ -3 \end{pmatrix} , \begin{pmatrix} 1 \\ 1 \\ -4 \\ 1 \end{pmatrix} \right\}.
\]

Solution: Denote the vectors in the set

\[
\left\{ \begin{pmatrix} 1 \\ -1 \\ 1 \\ 1 \end{pmatrix} , \begin{pmatrix} -2 \\ 0 \\ 3 \\ 0 \end{pmatrix} , \begin{pmatrix} 1 \\ -3 \\ 6 \\ -3 \end{pmatrix} , \begin{pmatrix} 1 \\ 1 \\ -4 \\ 1 \end{pmatrix} \right\}
\]
by \(v_1, v_2, v_3\) and \(v_4\), respectively, we look for a linear vector relation of the form
\[
c_1v_1 + c_2v_2 + c_3v_3 + c_4v_4 = 0. \tag{4}
\]
This leads to the system
\[
\begin{cases}
c_1 - 2c_2 + c_3 + c_4 &= 0 \\
c_1 - 3c_3 + c_4 &= 0 \\
c_1 + 3c_2 + 6c_3 - 4c_4 &= 0 \\
-c_1 - 3c_3 + c_4 &= 0.
\end{cases} \tag{5}
\]
The augmented matrix of this system is:
\[
\begin{bmatrix}
R_1 & 1 & -2 & 1 & 1 & | & 0 \\
R_2 & -1 & 0 & -3 & 1 & | & 0 \\
R_3 & 1 & 3 & 6 & -4 & | & 0 \\
R_4 & -1 & 0 & -3 & 1 & | & 0
\end{bmatrix}
\]
We can reduce this matrix to
\[
\begin{bmatrix}
1 & 0 & 3 & -1 & | & 0 \\
0 & 1 & 1 & -1 & | & 0 \\
0 & 0 & 0 & 0 & | & 0 \\
0 & 0 & 0 & 0 & | & 0
\end{bmatrix}
\]
which is in reduced row–echelon form. We therefore get that the system in (5) is equivalent to the system
\[
\begin{cases}
c_1 + 3c_3 - c_4 &= 0 \\
c_2 + c_3 - c_4 &= 0.
\end{cases} \tag{6}
\]
Solving for the leading variables in (6) yields the solutions
\[
\begin{cases}
c_1 &= 3t + s \\
c_2 &= t + s \\
c_3 &= -t \\
c_4 &= s,
\end{cases} \tag{7}
\]
where \(t\) and \(s\) are arbitrary parameters. Taking \(t = 1\) and \(s = 0\) in (7) yields from (4) the linear relation
\[
3v_1 + v_2 - v_3 = 0,
\]
which shows that \(v_3 = -3v_1 - v_2\); that is, \(v_3 \in \text{span}\{v_1, v_2\}\).
Similarly, taking $t = 0$ and $s = 1$ in (7) yields

$$v_1 + v_2 + v_4 = 0,$$

which shows that $v_4 = -v_1 - v_2$; that is, $v_4 \in \text{span}\{v_1, v_2\}$.

We then have that both v_3 and v_4 are in the span of $\{v_1, v_2\}$. Consequently,

$$\{v_1, v_2, v_3, v_4\} \subseteq \text{span}\{v_1, v_2\},$$

from which we get that

$$\text{span}\{v_1, v_2, v_3, v_4\} \subseteq \text{span}\{v_1, v_2\},$$

since $\text{span}\{v_1, v_2, v_3, v_4\}$ is the smallest subspace of \mathbb{R}^3 which contains $\{v_1, v_2, v_3, v_4\}$. Combining this with

$$\text{span}\{v_1, v_2\} \subseteq \text{span}\{v_1, v_2, v_3, v_4\},$$

we conclude that

$$\text{span}\{v_1, v_2\} = \text{span}\{v_1, v_2, v_3, v_4\};$$

that is, $\{v_1, v_2\}$ spans $\text{span}\{v_1, v_2, v_3, v_4\}$.

To see that $\{v_1, v_2\}$ is linearly independent, observe that v_1 and v_2 are not multiples of each other. We therefore conclude that $\{v_1, v_2\}$ is a basis for $\text{span}\{v_1, v_2, v_3, v_4\}$. \square

3. Find a basis for the solution space of the system

\[
\begin{cases}
 x_1 - x_2 + x_3 - x_4 = 0 \\
 2x_1 - x_2 - 2x_4 = 0 \\
 -x_1 + x_3 + x_4 = 0,
\end{cases}
\]

and compute its dimension.

Solution: We first find the solution space, W, of the system. In order to do this, we reduce the augmented matrix of this system,

\[
\begin{pmatrix}
 R_1 & 1 & -1 & 1 & -1 & | & 0 \\
 R_2 & 2 & -1 & 0 & -2 & | & 0 \\
 R_3 & -1 & 0 & 1 & 1 & | & 0
\end{pmatrix},
\]

Similarly, taking $t = 0$ and $s = 1$ in (7) yields

$$v_1 + v_2 + v_4 = 0,$$

which shows that $v_4 = -v_1 - v_2$; that is, $v_4 \in \text{span}\{v_1, v_2\}$.

We then have that both v_3 and v_4 are in the span of $\{v_1, v_2\}$. Consequently,

$$\{v_1, v_2, v_3, v_4\} \subseteq \text{span}\{v_1, v_2\},$$

from which we get that

$$\text{span}\{v_1, v_2, v_3, v_4\} \subseteq \text{span}\{v_1, v_2\},$$

since $\text{span}\{v_1, v_2, v_3, v_4\}$ is the smallest subspace of \mathbb{R}^3 which contains $\{v_1, v_2, v_3, v_4\}$. Combining this with

$$\text{span}\{v_1, v_2\} \subseteq \text{span}\{v_1, v_2, v_3, v_4\},$$

we conclude that

$$\text{span}\{v_1, v_2\} = \text{span}\{v_1, v_2, v_3, v_4\};$$

that is, $\{v_1, v_2\}$ spans $\text{span}\{v_1, v_2, v_3, v_4\}$.

To see that $\{v_1, v_2\}$ is linearly independent, observe that v_1 and v_2 are not multiples of each other. We therefore conclude that $\{v_1, v_2\}$ is a basis for $\text{span}\{v_1, v_2, v_3, v_4\}$. \square

3. Find a basis for the solution space of the system

\[
\begin{cases}
 x_1 - x_2 + x_3 - x_4 = 0 \\
 2x_1 - x_2 - 2x_4 = 0 \\
 -x_1 + x_3 + x_4 = 0,
\end{cases}
\]

and compute its dimension.

Solution: We first find the solution space, W, of the system. In order to do this, we reduce the augmented matrix of this system,
to its reduced row–echelon form:

\[
\begin{pmatrix}
1 & 0 & -1 & 0 & | & 0 \\
0 & 1 & -2 & 0 & | & 0 \\
0 & 0 & 0 & 1 & | & 0
\end{pmatrix}.
\]

Consequently, the system in (8) is equivalent to the system

\[
\begin{cases}
x_1 - x_3 = 0 \\
x_2 - 2x_3 = 0 \\
x_4 = 0.
\end{cases}
\]

Solving for the leading variables in the system in (9) we obtain the solutions

\[
\begin{cases}
x_1 = t \\
x_2 = 2t \\
x_3 = t \\
x_4 = 0,
\end{cases}
\]

where \(t \) is an arbitrary parameter. I then follows that the solution space of system (9) is

\[W = \text{span} \left\{ \begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix} \right\}.\]

Hence

\[
\begin{cases}
\begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix}
\end{cases}
\]

is a basis for \(W \) and therefore \(\dim(W) = 1. \)

4. Prove that any set of four vectors in \(\mathbb{R}^3 \) must be linearly dependent.

\textbf{Proof:} Let \(v_1, v_2, v_3 \) and \(v_4 \) denote four vectors in \(\mathbb{R}^3 \) and write

\[
v_1 = \begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \end{pmatrix}, \quad v_2 = \begin{pmatrix} a_{12} \\ a_{22} \\ a_{32} \end{pmatrix}, \quad v_3 = \begin{pmatrix} a_{13} \\ a_{23} \\ a_{33} \end{pmatrix} \quad \text{and} \quad v_4 = \begin{pmatrix} a_{14} \\ a_{24} \\ a_{34} \end{pmatrix}.
\]

Consider the vector equation

\[
c_1v_1 + c_2v_2 + c_3v_3 + c_4v_4, = 0.
\]

(10)
This equation translates into the homogeneous system
\[
\begin{align*}
 a_{11}c_1 + a_{12}c_2 + a_{13}c_3 + a_{14}c_4 &= 0 \\
 a_{21}c_1 + a_{22}c_2 + a_{23}c_3 + a_{24}c_4 &= 0 \\
 a_{31}c_1 + a_{32}c_2 + a_{33}c_3 + a_{34}c_4 &= 0,
\end{align*}
\]

(11)
of 3 linear equations in 4 unknowns. It then follows from the Fundamental Theorem for homogeneous linear systems that system (11) has infinitely many solutions. Consequently, the vector equation in (10) has a nontrivial solution, and therefore the set \(\{v_1, v_2, v_3, v_4\}\) is linearly dependent.

5. Show that if the set \(\{v_1, v_2\}\) is a linearly independent subset of \(\mathbb{R}^n\), then so is the set \(\{v_1, cv_1 + v_2\}\), where \(c\) is a scalar, and, conversely, if \(\{v_1, cv_1 + v_2\}\) is linearly independent, then so is \(\{v_1, v_2\}\). Show also that \(\text{span}\{v_1, v_2\} = \text{span}\{v_1, cv_1 + v_2\}\).

(a) First we prove that \(\{v_1, v_2\}\) is a linearly independent subset of \(\mathbb{R}^n\), then so is the set \(\{v_1, cv_1 + v_2\}\).

Proof: Assume that \(\{v_1, v_2\}\) is a linearly independent and consider the vector equation
\[
c_1v_1 + c_2(cv_1 + v_2) = 0.
\]
(12)
Applying the distributive and associative properties, the equation in (12) turns into
\[
(c_1 + cc_2)v_1 + c_2v_2 = 0.
\]
(13)
It follows from (13) and the linear independence of \(\{v_1, v_2\}\) that
\[
\begin{align*}
 c_1 + cc_2 &= 0 \\
 c_2 &= 0.
\end{align*}
\]
(14)
The system in (14) has only the trivial solution: \(c_2 = c_1 = 0\). Hence, the vector equation in (12) has only the trivial solution and therefore the set \(\{v_1, cv_1 + v_2\}\) is linearly independent.

(b) Next, we prove the converse of the statement in (a): If \(\{v_1, cv_1 + v_2\}\) is linearly independent, then \(\{v_1, v_2\}\) is a linearly independent.

Proof: Assume that \(\{v_1, cv_1 + v_2\}\) is a linearly independent and consider the vector equation
\[
c_1v_1 + c_2v_2 = 0.
\]
(15)
Adding \(0 = cc_2 v_1 - cc_2 v_1 \) to the left-hand side of the equation in (15) and applying the distributive and associative properties we get

\[(c_1 - cc_2)v_1 + c_2(cv_1 + v_2) = 0.\] (16)

It follows from (16) and the linear independence of \(\{v_1, cv_1 + v_2\} \) that

\[
\begin{aligned}
&c_1 - cc_2 = 0 \\
c_2 &\quad = 0.
\end{aligned}
\] (17)

The system in (17) has only the trivial solution: \(c_2 = c_1 = 0 \). Hence, the vector equation in (15) has only the trivial solution and therefore the set \(\{v_1, v_2\} \) is linearly independent.

(c) We prove that that \(\text{span}\{v_1, v_2\} = \text{span}\{v_1, cv_1 + v_2\} \).

\textbf{Proof:} Let \(W = \text{span}\{v_1, v_2\} \). Then, \(W \) is a subspace which contains \(v_1 \) and \(v_2 \) and all their linear combinations; in particular, \(cv_1 + v_2 \in W \). We then have that

\(\{v_1, cv_1 + v_2\} \subseteq W \).

It then follows that

\(\text{span}\{v_1, cv_1 + v_2\} \subseteq W \),

since \(\text{span}\{v_1, cv_1 + v_2\} \) is the smallest subspace of \(\mathbb{R}^n \) which contains \(\{v_1, cv_1 + v_2\} \). On the other hand, for any \(u \in W \) there exist scalars \(c_1 \) and \(c_2 \) such that

\(u = c_1 v_1 + c_2 v_2 \).

Consequently,

\[u = c_1 v_1 + c_2 v_2 + cc_2 v_1 - cc_2 v_1 = (c_1 - cc_2)v_1 + c_2(cv_1 + v_2), \]

which shows that \(u \in \text{span}\{v_1, cv_1 + v_2\} \); thus,

\(u \in W \Rightarrow u \in \text{span}\{v_1, cv_1 + v_2\} \),

or

\(W \subseteq \text{span}\{v_1, cv_1 + v_2\} \).

Combining this with (18) yields that

\(W = \text{span}\{v_1, cv_1 + v_2\} \).

\[\square\]
6. Let \(J \) and \(H \) be planes in \(\mathbb{R}^3 \) given by
\[
J = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mid 2x + 3y - 6z = 0 \right\} \quad \text{and} \quad H = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mid x - 2y + z = 0 \right\}.
\]

(a) Give bases for \(J \) and \(H \) and compute their dimensions.

Solution: To find a basis for \(J \), we solve the equation
\[
2x + 3y + z = 0
\]
to get the solution space \(J = \text{span} \left\{ \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} \right\} \). Thus, the set
\[
\left\{ \begin{pmatrix} 3 \\ 0 \\ 1 \\ \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} \right\}
\]
is a basis for \(J \) and so \(\dim(J) = 2 \).

Similarly, for \(H \), we solve
\[
x - 2y + z = 0
\]
and obtain that
\[
\left\{ \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \right\}
\]
is a basis for \(H \); thus, \(\dim(H) = 2 \). \(\square \)

(b) Give a basis for the subspace \(J \cap H \) and compute \(\dim(J \cap H) \).

Solution: Vectors \(\begin{pmatrix} x \\ y \\ z \end{pmatrix} \) in the intersection of \(J \) and \(H \) if they are solutions to the system of equations
\[
\begin{aligned}
2x + 3y - 6z &= 0 \\
x - 2y + z &= 0.
\end{aligned}
\]

Thus, to find \(J \cap H \), we may elementary row operations on the augmented matrix
\[
\begin{pmatrix}
R_1 & 2 & 3 & -6 & 0 \\
R_2 & 1 & -2 & 1 & 0
\end{pmatrix}
\]
to obtain the reduced matrix
\[
\begin{pmatrix}
1 & 0 & -9/7 & 0 \\
0 & 1 & -8/7 & 0
\end{pmatrix}.
\]
Thus, the system in (19) is equivalent to
\[
\begin{aligned}
x - \frac{9}{7}z &= 0 \\
y - \frac{8}{7}z &= 0,
\end{aligned}
\]
Solving for the leading variables in system (20) and setting \(z = 7t\), where \(t\) is an arbitrary parameter, we obtain that
\[
J \cap H = \text{span} \begin{pmatrix} 9 \\ 8 \\ 7 \end{pmatrix}.
\]
Thus, the set
\[
\left\{ \begin{pmatrix} 9 \\ 8 \\ 7 \end{pmatrix} \right\}
\]
is a basis for \(J \cap H\) and, therefore, \(\dim(J \cap H) = 1\).

7. Let \(W\) be a subspace of \(\mathbb{R}^n\).

(a) Prove that if \(v \in W\) and \(v \neq 0\), then \(rv = sv\) implies that \(r = s\), where \(r\) and \(s\) are scalars.

Proof: Suppose that \(v \in W\), where \(W\) is a subspace of \(\mathbb{R}^n\), and that \(v \neq 0\). Suppose also that
\[
rv = sv
\]
for some scalars \(r\) and \(s\). Add \(-sv\) on both sides of the vector equation in (21) and apply the distributive property to obtain
\[
(r - s)v = 0.
\]
Taking the Euclidean inner product with \(v\) of both sides of (22) yields
\[
(r - s)(v, v) = 0, \quad \text{(23)}
\]
where we have used the bi-linearity of the inner product. It then follows from (23), the positive definiteness of the inner product, and the assumption that \(v \neq 0\), that
\[
r - s = 0
\]
and therefore \(r = s\), which was to be shown.
(b) Prove that if \(W \) has more than one element, then \(W \) has infinitely many elements.

\textit{Proof:} Since \(W \) has at least two elements, there has to be a vector, \(v \), in \(W \) such that \(v \neq 0 \). Now, for any \(t \in \mathbb{R} \), \(tv \in W \) because \(W \) is closed under scalar multiplication. By part (a), \(t_1v \neq t_2v \) for any \(t_1 \neq t_2 \). Consequently, \(W \) contains infinitely many vectors. \(\square \)

8. Let \(W \) be a subspace of \(\mathbb{R}^n \) and \(S_1 \) and \(S_2 \) be subsets of \(W \).

(a) Show that \(\text{span}(S_1 \cap S_2) \subseteq \text{span}(S_1) \cap \text{span}(S_2) \).

\textit{Proof:} First observe that \(S_1 \cap S_2 \subseteq S_1 \) and \(S_1 \cap S_2 \subseteq S_2 \). Consequently, \(\text{span}(S_1 \cap S_2) \subseteq \text{span}(S_1) \) and \(\text{span}(S_1 \cap S_2) \subseteq \text{span}(S_2) \).

It then follows that
\[
\text{span}(S_1 \cap S_2) \subseteq \text{span}(S_1) \cap \text{span}(S_2),
\]
which was to be shown. \(\square \)

(b) Give an example in which \(\text{span}(S_1 \cap S_2) \neq \text{span}(S_1) \cap \text{span}(S_2) \).

\textit{Solution:} Let \(S_1 = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\} \) and \(S_2 = \left\{ \begin{pmatrix} -1 \\ 0 \end{pmatrix} \right\} \). Then, \(S_1 \cap S_2 = \emptyset \) so that \(\text{span}(S_1 \cap S_2) = \{0\} \), where \(0 \) denotes the zero vector in \(\mathbb{R}^2 \).

On the other hand,
\[
\text{span}(S_1) = \left\{ \begin{pmatrix} x \\ 0 \end{pmatrix} \in \mathbb{R}^2 \mid x \in \mathbb{R} \right\}
\]
and
\[
\text{span}(S_2) = \left\{ \begin{pmatrix} x \\ 0 \end{pmatrix} \in \mathbb{R}^2 \mid x \in \mathbb{R} \right\}.
\]

Hence,
\[
\text{span}(S_1) \cap \text{span}(S_2) = \left\{ \begin{pmatrix} x \\ 0 \end{pmatrix} \in \mathbb{R}^2 \mid x \in \mathbb{R} \right\} \neq \{0\}.
\]
\(\square \)
(c) Show that if \(S_1 \subseteq S_2 \) and \(S_2 \) is linearly independent, then \(S_1 \) is also linearly independent.

Proof: Suppose that \(S_1 \subseteq S_2 \) and \(S_2 \) is linearly independent, and that \(c_1, c_2, \ldots, c_n \) solve the vector equation

\[
c_1v_1 + c_2v_2 + \cdots + c_kv_k = 0,
\]

where \(v_1, v_2, \ldots, v_k \) are vectors in \(S_1 \). Since we are assuming that \(S_1 \subseteq S_2 \), the vectors \(v_1, v_2, \ldots, v_k \) are also in \(S_2 \), which is assumed to be linearly independent; consequently,

\[
c_1 = c_2 = \cdots = c_k = 0.
\]

Thus, we have shown that for any finite set of vectors, \(v_1, v_2, \ldots, v_k \), in \(S_1 \), the vector equation in (24) has only the trivial solution. Hence, \(S_1 \) is linearly independent.

(d) Show that if \(S_1 \subseteq S_2 \) and \(S_1 \) is linearly dependent, then \(S_2 \) is also linearly dependent.

Proof: Suppose that \(S_1 \subseteq S_2 \) and \(S_1 \) is linearly dependent. Then, there exist vectors \(v_1, v_2, \ldots, v_k \) are vectors in \(S_1 \) such that the equation

\[
c_1v_1 + c_2v_2 + \cdots + c_kv_k = 0,
\]

has a nontrivial solution. Since we are assuming that \(S_1 \subseteq S_2 \), the vectors \(v_1, v_2, \ldots, v_k \) are also in \(S_2 \). This proves that \(S_2 \) is linearly dependent.

9. Let \(W_1 \) and \(W_2 \) be two subspaces of \(\mathbb{R}^n \). We write \(W_1 \oplus W_2 \) for the subspace \(W_1 + W_2 \) for the special case in which \(V = W_1 \cap W_2 = \{0\} \). Show that every vector \(v \in W_1 \oplus W_2 \) can be written in the form \(v = v_1 + v_2 \), where \(v_1 \in W_1 \) and \(v_2 \in W_2 \), in one and only one way; that is, if \(v = u_1 + u_2 \), where \(u_1 \in W_1 \) and \(u_2 \in W_2 \), then \(u_1 = v_1 \) and \(u_2 = v_2 \).

Proof: Suppose that \(W_1 \) and \(W_2 \) are two subspaces of \(\mathbb{R}^n \) which have only the zero vector in common; that is, \(W_1 \cap W_2 = \{0\} \). Let \(v \) be any \(v \in W_1 + W_2 \). Then, \(v = v_1 + v_2 \), where \(v_1 \in W_1 \) and \(v_2 \in W_2 \). Suppose that \(v \) can also be written as \(v = u_1 + u_2 \), where \(u_1 \in W_1 \) and \(u_2 \in W_2 \). Then,

\[
v_1 + v_2 = u_1 + u_2,
\]
from which we get that
\[v_1 - u_1 = v_2 - u_2, \]
(26)
where \(v_1 - u_1 \in W_1 \) and \(v_2 - u_2 \in W_2 \) since \(W_1 \) and \(W_2 \) are subspaces of \(\mathbb{R}^n \).
It also follows from (26) that \(v_1 - u_1 \in W_2 \). Thus, \(v_1 - u_1 \in W_1 \cap W_2 = \{0\} \),
which implies that
\[v_1 - u_1 = 0, \]
or
\[v_1 = u_1. \]
Similarly, we get that \(v_2 = u_2 \).

10. Let \(v \in \mathbb{R}^n \) and define \(W = \{ w \in \mathbb{R}^n \mid \langle w, v \rangle = 0 \} \).

(a) Prove that \(W \) is a subspace of \(\mathbb{R}^n \).

Proof: First, observe that \(W \neq \emptyset \) because \(\langle 0, v \rangle = 0 \) and therefore \(0 \in W \) and so \(W \) is nonempty.
Next, we show that \(W \) is closed under addition and scalar multiplication.
To see that \(W \) is closed under scalar multiplication, observe that, by the bi–linearity property of the inner product, if \(w \in W \), then
\[\langle t v, w \rangle = t \langle v, w \rangle = t \cdot 0 = 0 \]
for all \(t \in \mathbb{R} \).
To show that \(W \) is closed under vector addition, let \(w_1 \) and \(w_2 \) be two vectors in \(W \). Then, applying the bi–linearity property of the inner product again,
\[\langle w_1 + w_2, v \rangle = \langle w_1, v \rangle + \langle w_2, v \rangle = 0 + 0 = 0; \]
hence, \(w_1 + w_2 \in W \).

(b) Suppose that \(v \neq 0 \) and compute \(\dim(W) \).

Solution: Let \(B = \{ w_1, w_2, \ldots, w_k \} \) be a basis for \(W \). Then, \(\dim(W) = k \) and we would like to determine what \(k \) is.
First note that \(v \not\in \text{span}(B) \). For, suppose that \(v \in \text{span}(B) = W \), then
\[\langle v, v \rangle = 0. \]
Thus, by the positive definiteness of the Euclidean inner product, it follows that \(v = 0 \), but we are assuming that \(v \neq 0 \). Consequently, the set
\[B \cup \{v\} = \{ w_1, w_2, \ldots, w_k, v \} \]
is linearly independent. We claim that $B \cup \{v\}$ also spans \mathbb{R}^n. To see why this is so, let $u \in \mathbb{R}^n$ be any vector in \mathbb{R}^n, and let

$$t = \frac{\langle u, v \rangle}{\|v\|^2}.$$

Write

$$u = tv + (u - tv),$$

and observe that $u - tv \in W$. To see why this is so, compute

$$\langle u - tv, v \rangle = \langle u, v \rangle - t\langle v, v \rangle = \langle u, v \rangle - t\|v\|^2 = \langle u, v \rangle - \frac{\langle u, v \rangle}{\|v\|^2}\|v\|^2 = \langle u, v \rangle - \langle u, v \rangle = 0.$$

Thus, $u - tv \in W$. It then follows that there exist scalars c_1, c_2, \ldots, c_k such that

$$u - tv = c_1 w_1 + c_2 w_2 + \cdots + c_k w_k.$$

Thus,

$$u = c_1 w_1 + c_2 w_2 + \cdots + c_k w_k + tv,$$

which shows that $u \in \text{span}(B \cup \{v\})$. Consequently, $B \cup \{v\}$ spans \mathbb{R}^n. Therefore, since $B \cup \{v\}$ is also linearly independent, it forms a basis for \mathbb{R}^n. We then have that $B \cup \{v\}$ must have n vectors in it, since $\dim(\mathbb{R}^n) = n$; that is,

$$k + 1 = n,$$

from which we get that

$$\dim(W) = n - 1.$$