Solutions to Exam 1

1. Answer the following questions as thoroughly as possible.

 (a) State precisely what it means for the set of vectors \(\{v_1, v_2, \ldots, v_k\} \) in \(\mathbb{R}^n \) to be linearly independent.

 \textbf{Answer:} The set \(\{v_1, v_2, \ldots, v_k\} \) is linearly independent in \(\mathbb{R}^n \) if and only if the vector equation
 \[c_1v_1 + c_2v_2 + \cdots + c_kv_k = 0 \]
 has only the trivial solution
 \[c_1 = c_2 = \cdots = c_k = 0. \]

 \[\square \]

 \textbf{Alternate Answer:} The set \(\{v_1, v_2, \ldots, v_k\} \) is linearly independent in \(\mathbb{R}^n \) if and only if no vector in the set is in the span of the other vectors.

 \[\square \]

 (b) Define the span of the set of vectors, \(S \), in \(\mathbb{R}^n \).

 \textbf{Answer:} The span of \(S \) is the set of all finite linear combinations of vectors in \(S \).

 \[\square \]

 \textbf{Alternate Answer:} The span of \(S \) is the smallest subspace of \(\mathbb{R}^n \) which contains \(S \).

 \[\square \]

 (c) Let \(W \) denote a subspace of \(\mathbb{R}^n \). Define the coordinates of a vector \(v \in W \) relative to a basis \(B \) for \(W \).

 \textbf{Answer:} Let \(B = \{w_1 + w_2 + \cdots + w_k\} \) be an ordered basis for \(W \). Given \(v \in W \), the coordinates of \(v \) relative to \(B \) are the unique set of scalars \(c_1, c_2, \ldots, c_k \) such that
 \[v = c_1w_1 + c_2w_2 + \cdots + c_kw_k. \]

 \[\square \]

2. Determine whether the following statements are true or false. If false, give examples to justify your conclusion. If true, provide an argument to justify your answer.
(a) The set, \(\{v_1, v_2, v_3\} \), of vectors in \(\mathbb{R}^2 \) is linearly dependent.

Answer: True.

Proof: Write
\[
v_1 = \begin{pmatrix} a_1 \\ b_1 \end{pmatrix}, \quad v_2 = \begin{pmatrix} a_2 \\ b_2 \end{pmatrix}, \quad \text{and} \quad v_3 = \begin{pmatrix} a_3 \\ b_3 \end{pmatrix},
\]
and consider the vector equation
\[
c_1v_1 + c_2v_2 + c_3v_3 = 0,
\]
where \(0 \) denotes the zero–vector in \(\mathbb{R}^2 \). Equation (1) is equivalent to the system
\[
\begin{align*}
a_1c_1 + a_2c_2 + a_3c_3 &= 0 \\
b_1c_1 + b_2c_2 + b_3c_3 &= 0,
\end{align*}
\]
which is a homogeneous system of two linear equations in three unknowns. It follows by the Fundamental Theorem of Homogeneous Linear Systems that (2) has a nontrivial solution. Consequently, the vector equation in (1) has a nontrivial solution and therefore \(\{v_1, v_2, v_3\} \) is a linearly dependent subset of \(\mathbb{R}^2 \).

(b) The set of vectors in \(\mathbb{R}^3 \), \(\{0, v_1, v_2\} \) is linearly independent.

Answer: False.

Note that \(0 = 0 \cdot v_1 + 0 \cdot v_2 \), and so \(0 \) is in the span of \(v_1 \) and \(v_2 \).

(c) If \(S_1 \) and \(S_2 \) are linearly independent, then \(S_1 \cup S_2 \) is also linearly independent.

Answer: False.

Let \(S_1 = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\} \) and \(S_2 = \left\{ \begin{pmatrix} 2 \\ 0 \end{pmatrix} \right\} \). Then, \(S_1 \) and \(S_2 \) are linearly independent, but
\[
S_1 \cup S_2 = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \end{pmatrix} \right\}
\]
is linearly dependent since \(\begin{pmatrix} 2 \\ 0 \end{pmatrix} \) is a scalar multiple of \(\begin{pmatrix} 1 \\ 0 \end{pmatrix} \).
3. Let \(\langle v, w \rangle \) denote the Euclidean inner product in \(\mathbb{R}^n \). For a fixed vector \(u \) in \(\mathbb{R}^n \), define the set
\[
W = \{ w \in \mathbb{R}^n \mid \langle u, w \rangle = 0 \}.
\]
Prove that \(W \) is a subspace of \(\mathbb{R}^n \).

Proof: First, observe that \(W \neq \emptyset \) because \(\langle u, 0 \rangle = 0 \) and therefore \(0 \in W \) and so \(W \) is nonempty.

Next, we show that \(W \) is closed under addition and scalar multiplication.

To see that \(W \) is closed under scalar multiplication, observe that, by the bi–linearity property of the inner product, if \(w \in W \), then
\[
\langle u, tw \rangle = t \langle u, w \rangle = t \cdot 0 = 0
\]
for all \(t \in \mathbb{R} \).

To show that \(W \) is closed under vector addition, let \(w_1 \) and \(w_2 \) be two vectors in \(W \). Then, applying the bi–linearity property of the inner product again,
\[
\langle v, w_1 + w_2 \rangle = \langle u, w_1 \rangle + \langle u, w_2 \rangle = 0 + 0 = 0;
\]
hence, \(w_1 + w_2 \in W \). \(\square \)

4. Find a basis for the solution space, \(W \), of the homogenous system
\[
\begin{align*}
3x_1 - x_2 + 2x_3 + x_4 &= 0 \\
2x_1 - x_2 + x_3 &= 0 \\
x_1 + x_3 + x_4 &= 0,
\end{align*}
\]
and compute \(\dim(W) \).

Solution: We first find the solution space, \(W \), of the system. In order to do this, we reduce the augmented matrix of this system,
\[
\begin{pmatrix}
R_1 & 3 & -1 & 2 & 1 & 0 \\
R_2 & 2 & -1 & 1 & 0 & 0 \\
R_3 & 1 & 0 & 1 & 1 & 1
\end{pmatrix},
\]
to its reduced row–echelon form:
\[
\begin{pmatrix}
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}.
\]
Consequently, the system in (3) is equivalent to the system

\[
\begin{align*}
 x_1 + x_3 + x_4 &= 0 \\
 x_2 + x_3 + 2x_4 &= 0.
\end{align*}
\]

(4)

Solving for the leading variables in the system in (4) and setting \(x_3 = -t\) and \(x_4 = -s\), where \(t\) and \(s\) are arbitrary parameters, we obtain the solutions

\[
\begin{align*}
 x_1 &= t + s \\
 x_2 &= t + 2s \\
 x_3 &= -t \\
 x_4 &= -s.
\end{align*}
\]

It then follows that the solution space of system (4) is

\[
W = \text{span}\left\{ \begin{pmatrix} 1 \\ 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 0 \\ -1 \end{pmatrix} \right\}.
\]

Hence, the set

\[
B = \left\{ \begin{pmatrix} 1 \\ 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 0 \\ -1 \end{pmatrix} \right\}
\]

spans \(W\). It is also linearly independent since the vectors in \(B\) are not multiples of each other. Consequently, \(B\) is a basis for \(W\) and therefore \(\dim(W) = 2\). \qed