Solutions to Assignment #6

1. Let $x \in \mathbb{R}$. Prove that $0 < x \leq 1$ implies that $x^2 \leq x$.

 Proof: Assume that $x > 0$ and $x \leq 1$. Then,
 \[x \cdot x \leq x \cdot 1, \]
 from which the result follows. \qed

2. Let a and b denote real numbers. Use the triangle inequality to prove that
 \[||a| - |b|| \leq |a - b|. \]

 Proof. Write $a = (a - b) + b$ and take absolute value on both sides of this identity to get
 \[|a| = |(a - b) + b|. \]
 Applying the triangle inequality on the right–hand side we obtain that
 \[|a| \leq |a - b| + |b|, \]
 from which we get that
 \[|a| - |b| \leq |a - b|. \] \hspace{1cm} (1)
 Similar calculations show that
 \[|b| - |a| \leq |b - a|. \]
 Thus, using the fact that $|b - a| = |-(a - b)| = |a - b|$ and multiplying the previous inequality by -1, we obtain that
 \[-|a - b| \leq |a| - |b|. \] \hspace{1cm} (2)
 Combining the inequalities in (1) and (2) yields
 \[-|a - b| \leq |a| - |b| \leq |a - b|, \]
 which is equivalent to $||a| - |b|| \leq |a - b|$. \qed
3. Let a and b denote positive real numbers. Start with the true statement

$$(a - b)^2 \geq 0$$

to prove the inequality

$$ab \leq \frac{a^2 + b^2}{2}.$$

Prove that equality holds if and only if $a = b$.

Solution: From the inequality

$$0 \leq (a - b)^2$$

we obtain

$$0 \leq a^2 - 2ab + b^2.$$

Adding $2ab$ to both sides of the last inequality we then have that

$$2ab \leq a^2 + b^2,$$

from which the result follows after dividing by 2.

Equality holds if and only if

$$(a - b)^2 = 0,$$

which is true if and only if $a - b = 0$, or $a = b$. □

4. Given a real number x, denote by $\max\{x, 0\}$ the larger of x and 0. Prove that

$$\max\{x, 0\} = \frac{x + |x|}{2}.$$

Solution: We consider two cases: (i) $x \geq 0$, and (ii) $x < 0$.

(i) If $x \geq 0$, then $\max\{x, 0\} = x$. On the other hand

$$\frac{x + |x|}{2} = \frac{x + x}{2} = \frac{2x}{2} = x.$$

Thus, the equality is verified in this case.

(ii) If $x < 0$, then $\max\{x, 0\} = 0$, and

$$\frac{x + |x|}{2} = \frac{x - x}{2} = 0.$$

So, equality is verified in this case as well.
5. Let x and $\max\{x,0\}$ be as in the previous problem. Denote by $\min\{x,0\}$ the smaller of x and 0. Prove that

$$\min\{x,0\} = -\max\{-x,0\},$$

and use this result to derive a formula for $\min\{x,0\}$ analogous to that for $\max\{x,0\}$ proved in the previous problem.

Solution: We consider two cases: (i) $x \geq 0$, and (ii) $x < 0$.

(i) If $x \geq 0$, then $\min\{x,0\} = 0$ and $-x \leq 0$, so that $\max\{-x,0\} = 0$. Thus, equality holds in this case.

(ii) If $x < 0$, then $\min\{x,0\} = x$, and $-x > 0$, so that

$$\max\{-x,0\} = -x.$$

Consequently, $-\max\{-x,0\} = x$, which is $\min\{x,0\}$ is this case.

We have therefore established that

$$\min\{x,0\} = -\max\{-x,0\}.$$

Using the formula for \max derived in the previous problem we then have that

$$\min\{x,0\} = -\left(\frac{-x + |x|}{2}\right)$$

$$= \frac{x - |x|}{2},$$

since $|x| = |x|$ for all $x \in \mathbb{R}$. Hence,

$$\min\{x,0\} = \frac{x - |x|}{2}.$$

□