Assignment #17

Due on Wednesday, April 28, 2010

Do the following problems.

In these problems we see how to define \(a^x \), where \(a \) and \(x \) are real numbers with \(a > 0 \). You will need the results that you proved in Problems 4 and 5 of Assignment #16 and Problem 4 in Assignment #14.

1. Let \(x \in \mathbb{R} \). Prove that there exists a decreasing sequence, \((q_n)\), of rational numbers which converges to \(x \).

2. Let \(x \geq 0 \) and \((q_n)\) be a sequence of rational numbers which decreased to \(x \). For \(a > 1 \), define \(y_n = a^{q_n} \) for all \(n \in \mathbb{N} \). Prove that \((y_n)\) converges by showing that \((y_n)\) is monotone and bounded below.

Definition. For \(x \geq 0 \) and \(a > 1 \), we define \(a^x \) to be the limit of \((a^{q_n})\) as \(n \to \infty \), where \((q_n)\) is any sequence that decreases to \(x \). By Problem 2, \(\lim_{n \to \infty} a^{q_n} \) exists. Thus,

\[
a^x = \lim_{n \to \infty} a^{q_n}.
\]

For this definition to make sense, we must show that if \((q_n)\) and \((r_n)\) are any two sequences of rational numbers that decrease to \(x \), then

\[
\lim_{n \to \infty} a^{q_n} = \lim_{n \to \infty} a^{r_n}.
\]

We will prove this fact in Problems 3 and 4.

3. Let \(a > 1 \) and \((q_n)\) be a monotone sequence which converges to \(0 \). Prove that

\[
\lim_{n \to \infty} a^{q_n} = 1
\]

Hint: Prove that there is a subsequence, \((q_{n_k})\), of \((q_n)\) such that

\[
-\frac{1}{k} < q_{n_k} < \frac{1}{k} \quad \text{for all } k \in \mathbb{N}.
\]

Then, use the result of Problem 4 in Assignment #14.
4. Assume that \(a > 1 \) and let \((q_n) \) and \((r_n) \) be two sequences of rational numbers that decrease to \(x \). Prove that

\[
\lim_{n \to \infty} a^{q_n} = \lim_{n \to \infty} a^{r_n}.
\]

Hint: Consider \(\frac{a^{q_n}}{a^{r_n}} = a^{q_n-r_n} \) and use the result of Problem 3.

5. Let \(a > 0 \) and \(x \in \mathbb{R} \).

(a) Explain how to define \(a^x \).

(b) For real numbers, \(x \) and \(y \), prove that \(a^{x+y} = a^x a^y \).

(c) For real numbers, \(x \) and \(y \), prove that \(a^{x-y} = \frac{a^x}{a^y} \).