Solutions to Exam 1 (Part I)

1. Provide concise answers to the following questions:

(a) A subset, A, of the real numbers is said to be **bounded** if there exists a positive real number, M, such that

$$|a| \leq M \quad \text{for all } a \in A.$$

Give the negation of the statement

“A is bounded.”

Answer: The negation of "A is bounded" is

For every positive number, M, there exists an element, a, in A such that $|a| > M$.

(b) Let A denote a subset of the real numbers and β a positive real number. Give the contrapositive for the following implication:

$$t \in A \Rightarrow t \leq s - \beta.$$

Answer: The contrapositive of “$t \in A \Rightarrow t \leq s - \beta$” is

$$t > s - \beta \Rightarrow t \notin A.$$

2. Use the field and order axioms of the real numbers to prove the following.

(a) Let $a, b \in R$. If $ab = 0$, then either $a = 0$ or $b = 0$.

Proof: Assume that $ab = 0$ and $a \neq 0$. Then, by Field Axiom (F_9), a^{-1} exists. Multiplying

$$ab = 0$$

by a^{-1} on both sides yields

$$a^{-1}(ab) = a^{-1}\cdot 0 = 0,$$

from which we get that $b = 0$, where we have used the Field Axioms (F_7), (F_9) and (F_{10}). □
(b) Let \(p \in \mathbb{R} \). If \(p > 1 \), then \(p < p^2 \).

Proof: Assume that \(p > 1 \). It then follows that \(p > 0 \), since \(1 > 0 \). We also have that \(p - 1 > 0 \). Consequently, by the Order Axiom \((O_3)\),

\[
p(p - 1) > 0.
\]

Thus, by the distributive property,

\[
p^2 - p > 0,
\]

from which we get that \(p < p^2 \). \(\square \)

3. Use the completeness axiom of \(\mathbb{R} \) to prove that the set of natural numbers is not bounded above. Deduce, therefore, that for any real number, \(x \), there exists a natural number, \(n \), such that

\[
x < n.
\]

Proof: Assume by way of contradiction that \(\mathbb{N} \) is a bounded above. Then, since \(\mathbb{N} \) is not empty, it follows from the completeness axiom that \(\text{sup}(\mathbb{N}) \) exists. Thus there must be \(m \in \mathbb{N} \) such that

\[
\text{sup}(\mathbb{N}) - 1 < m. \tag{1}
\]

It follows from the inequality in (1) that

\[
\text{sup}(\mathbb{N}) < m + 1,
\]

where \(m + 1 \in \mathbb{N} \). This is a contradiction. Therefore, it must be that case that \(\mathbb{N} \) not bounded above.

Thus, given any real number, \(x \), there must be a natural number, \(n \), such that

\[
x < n.
\]

Otherwise,

\[
m \leq x \quad \text{for all } m \in \mathbb{N},
\]

which would say that \(x \) is an upper bound for \(\mathbb{N} \). But we just proved that \(\mathbb{N} \) is not bounded above. \(\square \)