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Solutions to Review Problems for Exam #1

1. Let B denote a non—empty subset of the real numbers which is bounded below.
Define
A ={z € R|zis alower bound for B}.

Prove that A is non—empty and bounded above, and that sup A = inf B.

Solution: Since B is bounded below, there exists ¢ € R such that ¢
is a lower bound for B. Hence, ¢ € A and, therefore, A is not empty.

Next, use the assumption that B is non—empty to conclude that there
exists b € B. Then, for any lower bound, ¢, of B,

< b.

Hence, b is an upper bound for A.

Thus, we have shown that A is non—empty and bounded above.
Therefore, by the Completeness Axiom, sup(A) exists.

We show next that sup(A) is the infimum of B.
First we show that sup(A) is a lower bound for B. Let ¢ € A, then

{<b forevery b€ B.
Thus, every b € B is an upper bound for A. Consequently,
sup(A) < b for every b€ B.

Hence, sup(A) is a lower bound for B.
Next, let ¢ be a lower bound for B. Then ¢ € A and therefore

c < sup(A);
that is, sup(A) is greater or equal to any lower bound for B. In other
words,
sup(A) = inf(B),
which was to be shown. 0

2. Prove that, for any real number, x,

2% = |2 = 22,
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Proof: Compute
| = |axf

= |af|z]
= laP
On the other hand, by the definition of the absolute value function,
2

|l‘2| =T,

since x? > 0. It then follows that |z|*> = 22, and the proof is now complete. [

3. Let a,b,c € R with ¢ > 0. Show that |a —b| < cif and only if b—c < a < b+c.

Solution: |a —b| < cif and only if —¢ < a — b < ¢, which is true if
and only if
b—c<a<b+ec,

where we have added b to each part of the inequality. O]

4. Let a,b € R. Show that if a < x for all z > b, then a < b.

Proof: Assume, by way of contradiction, that a < x for all x > b and a > b. It
then follows that a < a, which is absurd. Hence, a < x for all x > b implies
that a < b. O

5. Show that the set A = {1/n | n € N} is bounded above and below, and give its
supremum and infimum.

1

Solution: Observe that — <1 for all n € N. It then follows that 1
n

is an upper bound for A. Since, A # (), sup(A) exists and

sup(4) < 1.

To see that sup(A) = 1, observe that 1 € A and therefore 1 < sup(A).
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Next, observe that n > 0 for all n € N. It then follows that n=! > 0
for all n in N. Thus, 0 is a lower bound for A. Consequently, the
infimum of A exists and

0 < inf(A).
To see that inf(A) = 0, assume to the contrary that inf(A) > 0; then

> (. Since N is unbounded, there exists a natural number, n,

inf(A)
such that ]
" A
It then follows that )
— < inf(A
- < inf(A),
which is impossible since 1 € A. Thus, inf(A) = 0. O

n

6. Let A= {n—+ % | n € N}. Compute sup A and inf A, if they exist.

Solution: First note that, since

‘<—1) O
n n
for all n € N, it follows that
1" —1)"
n—i-( )271—‘( ) >n—1 (1)
n n

for all n € N. Consequently, the set A is not bounded since N is
unbounded. Therefore, sup(A) does not exist.

On the other hand, it follows from the inequality in (1) that

=D Sy
n

for all n € N. Thus, 0 is a lower bound for A. Therefore, since A is
not empty, inf(A) exists and

inf(A) > 0.

To see that inf(A) = 0, note that 0 € A. O
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7. Let A={1/n|n € N and n is prime}. Compute sup A and inf A, if they exist.

Solution: Since n = 2 is the smallest prime, it follows that n > 2
for all n € N which are prime. It then follows that

a < for all a € A.

N | —

1
Thus, 3 is an upper bound for A. Hence, since A is non—empty,

sup(A) exists and
sup(A) <

DN | —

1 1
In fact, sup(A) = 5 since 5 € A.

Next, note that, by definition, prime numbers are positive. Conse-
quently, a > 0 for all a € A and therefore 0 is a lower bound for A.
Thus, inf(A) exists and

inf(A) > 0.

To see that inf(A) = 0, argue by contradiction. If inf(A) > 0, then

> 0, and so, since the set of primes is unbounded, there exists

inf(A)
a prime number, p, with
! <
inf(A) b
from which we get that
1
inf(A) > —,
(4) ,
1
which is impossible since — € A. Therefore, inf(A) = 0. O
p

8. Let A denote a subset of R. Give the negation of the statement: “A is bounded
above.”

Solution: First, translate the statement “A is bounded above” into
Ju € R such that (Va € A) a < u.

Thus, the negation of the statement reads
(Vu € R) (Ja € A) such that a > w.
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9.

10.

In other words, “for every real number, u, it is possible to find an
element of A which is bigger than wu.” O

Let A C R be non—empty and bounded from above. Put s = sup A. Prove that
for every n € N there exists z,, € A such that

1
s—— <z, <S.
n

1
Proof: Note that for alln € N, — > 0. Thus,
n

1
§——<s.
n

Thus, for each n € N, it is possible to find an element of A, call it x,,, such that

1
§— — < Ty;
n

otherwise,

1
r<s—— forall x € A,
n

1
which would say that s —— is an upper bound of A, smaller than sup(A). This
n

is impossible. Hence, for every n € N there exists x,, € A such that

s—— <z, <S.
n

What can you say about a non—empty subset, A, of real numbers for which
sup A = inf A.

Solution: Assume that A C R is non—empty with sup(A) = inf(A).
Let a denote any element in A. Then,

sup(A) = inf(A) < a < sup(A),
which shows that a = sup(A). Thus,
A = {sup(4)};

in other words, A consists of a single element, sup(A). O



