Solutions to Review Problems for Exam #1

1. Let B denote a non-empty subset of the real numbers which is bounded below. Define

$$A = \{x \in \mathbb{R} \mid x \text{ is a lower bound for } B\}.$$

Prove that A is non-empty and bounded above, and that $\sup A = \inf B$.

Solution: Since B is bounded below, there exists $\ell \in \mathbb{R}$ such that ℓ is a lower bound for B. Hence, $\ell \in A$ and, therefore, A is not empty. Next, use the assumption that B is non-empty to conclude that there exists $b \in B$. Then, for any lower bound, ℓ, of B,

$$\ell \leq b.$$

Hence, b is an upper bound for A.

Thus, we have shown that A is non-empty and bounded above. Therefore, by the Completeness Axiom, $\sup(A)$ exists.

We show next that $\sup(A)$ is the infimum of B.

First we show that $\sup(A)$ is a lower bound for B. Let $\ell \in A$, then

$$\ell \leq b \quad \text{for every } b \in B.$$

Thus, every $b \in B$ is an upper bound for A. Consequently,

$$\sup(A) \leq b \quad \text{for every } b \in B.$$

Hence, $\sup(A)$ is a lower bound for B.

Next, let c be a lower bound for B. Then $c \in A$ and therefore

$$c \leq \sup(A);$$

that is, $\sup(A)$ is greater or equal to any lower bound for B. In other words,

$$\sup(A) = \inf(B),$$

which was to be shown. \qed

2. Prove that, for any real number, x,

$$|x^2| = |x|^2 = x^2.$$
Proof: Compute

\[|x^2| = |xx| \]
\[= |x||x| \]
\[= |x|^2. \]

On the other hand, by the definition of the absolute value function,

\[|x^2| = x^2, \]

since \(x^2 \geq 0 \). It then follows that \(|x|^2 = x^2 \), and the proof is now complete. \(\square \)

3. Let \(a, b, c \in \mathbb{R} \) with \(c > 0 \). Show that \(|a - b| < c \) if and only if \(b - c < a < b + c \).

Solution: \(|a - b| < c \) if and only if \(-c < a - b < c \), which is true if and only if

\[b - c < a < b + c, \]

where we have added \(b \) to each part of the inequality. \(\square \)

4. Let \(a, b \in \mathbb{R} \). Show that if \(a < x \) for all \(x > b \), then \(a \leq b \).

Proof: Assume, by way of contradiction, that \(a < x \) for all \(x > b \) and \(a > b \). It then follows that \(a < a \), which is absurd. Hence, \(a < x \) for all \(x > b \) implies that \(a \leq b \). \(\square \)

5. Show that the set \(A = \{1/n \mid n \in \mathbb{N}\} \) is bounded above and below, and give its supremum and infimum.

Solution: Observe that \(\frac{1}{n} \leq 1 \) for all \(n \in \mathbb{N} \). It then follows that 1 is an upper bound for \(A \). Since, \(A \neq \emptyset \), \(\text{sup}(A) \) exists and

\[\text{sup}(A) \leq 1. \]

To see that \(\text{sup}(A) = 1 \), observe that 1 \(\in A \) and therefore \(1 \leq \text{sup}(A) \).
Next, observe that \(n > 0 \) for all \(n \in \mathbb{N} \). It then follows that \(n^{-1} > 0 \) for all \(n \in \mathbb{N} \). Thus, 0 is a lower bound for \(A \). Consequently, the infimum of \(A \) exists and
\[
0 \leq \inf(A).
\]
To see that \(\inf(A) = 0 \), assume to the contrary that \(\inf(A) > 0 \); then
\[
\frac{1}{\inf(A)} > 0.
\]
Since \(\mathbb{N} \) is unbounded, there exists a natural number, \(n \), such that
\[
n > \frac{1}{\inf(A)}.
\]
It then follows that
\[
\frac{1}{n} < \inf(A),
\]
which is impossible since \(\frac{1}{n} \in A \). Thus, \(\inf(A) = 0 \). \(\square \)

6. Let \(A = \{ n + \frac{(-1)^n}{n} \mid n \in \mathbb{N} \} \). Compute \(\sup A \) and \(\inf A \), if they exist.

Solution: First note that, since
\[
\left| \frac{(-1)^n}{n} \right| = \frac{1}{n} \leq 1,
\]
for all \(n \in \mathbb{N} \), it follows that
\[
n + \frac{(-1)^n}{n} \geq n - \left| \frac{(-1)^n}{n} \right| \geq n - 1 \tag{1}
\]
for all \(n \in \mathbb{N} \). Consequently, the set \(A \) is not bounded since \(\mathbb{N} \) is unbounded. Therefore, \(\sup(A) \) does not exist.

On the other hand, it follows from the inequality in (1) that
\[
n + \frac{(-1)^n}{n} \geq 0
\]
for all \(n \in \mathbb{N} \). Thus, 0 is a lower bound for \(A \). Therefore, since \(A \) is not empty, \(\inf(A) \) exists and
\[
\inf(A) \geq 0.
\]
To see that \(\inf(A) = 0 \), note that \(0 \in A \). \(\square \)
7. Let \(A = \{1/n \mid n \in \mathbb{N} \text{ and } n \text{ is prime}\} \). Compute \(\sup A \) and \(\inf A \), if they exist.

Solution: Since \(n = 2 \) is the smallest prime, it follows that \(n \geq 2 \) for all \(n \in \mathbb{N} \) which are prime. It then follows that
\[
a \leq \frac{1}{2} \quad \text{for all } a \in A.
\]
Thus, \(\frac{1}{2} \) is an upper bound for \(A \). Hence, since \(A \) is non-empty, \(\sup(A) \) exists and
\[
\sup(A) \leq \frac{1}{2}.
\]
In fact, \(\sup(A) = \frac{1}{2} \) since \(\frac{1}{2} \in A \).

Next, note that, by definition, prime numbers are positive. Consequently, \(a > 0 \) for all \(a \in A \) and therefore 0 is a lower bound for \(A \). Thus, \(\inf(A) \) exists and
\[
\inf(A) \geq 0.
\]
To see that \(\inf(A) = 0 \), argue by contradiction. If \(\inf(A) > 0 \), then
\[
\frac{1}{\inf(A)} > 0,
\]
and so, since the set of primes is unbounded, there exists a prime number, \(p \), with
\[
\frac{1}{\inf(A)} < p,
\]
from which we get that
\[
\inf(A) > \frac{1}{p},
\]
which is impossible since \(\frac{1}{p} \in A \). Therefore, \(\inf(A) = 0. \) \(\square \)

8. Let \(A \) denote a subset of \(\mathbb{R} \). Give the negation of the statement: “\(A \) is bounded above.”

Solution: First, translate the statement “\(A \) is bounded above” into
\[
\exists u \in \mathbb{R} \text{ such that } (\forall a \in A) \ a \leq u.
\]
Thus, the negation of the statement reads
\[
(\forall u \in \mathbb{R}) \ (\exists a \in A) \text{ such that } a > u.
\]
In other words, “for every real number, \(u \), it is possible to find an element of \(A \) which is bigger than \(u \).” \(\square \)

9. Let \(A \subseteq \mathbb{R} \) be non–empty and bounded from above. Put \(s = \sup A \). Prove that for every \(n \in \mathbb{N} \) there exists \(x_n \in A \) such that

\[
s - \frac{1}{n} < x_n \leq s.
\]

Proof: Note that for all \(n \in \mathbb{N} \), \(\frac{1}{n} > 0 \). Thus,

\[
s - \frac{1}{n} < s.
\]

Thus, for each \(n \in \mathbb{N} \), it is possible to find an element of \(A \), call it \(x_n \), such that

\[
s - \frac{1}{n} < x_n;
\]

otherwise,

\[
x \leq s - \frac{1}{n} \quad \text{for all } x \in A,
\]

which would say that \(s - \frac{1}{n} \) is an upper bound of \(A \), smaller than \(\sup(A) \). This is impossible. Hence, for every \(n \in \mathbb{N} \) there exists \(x_n \in A \) such that

\[
s - \frac{1}{n} < x_n \leq s.
\]

\(\square \)

10. What can you say about a non–empty subset, \(A \), of real numbers for which \(\sup A = \inf A \).

Solution: Assume that \(A \subseteq \mathbb{R} \) is non–empty with \(\sup(A) = \inf(A) \).

Let \(a \) denote any element in \(A \). Then,

\[
\sup(A) = \inf(A) \leq a \leq \sup(A),
\]

which shows that \(a = \sup(A) \). Thus,

\[
A = \{\sup(A)\};
\]

in other words, \(A \) consists of a single element, \(\sup(A) \). \(\square \)