Solutions to Assignment #9

1. Given a discrete random variable X with a finite number of possible values $x_1, x_2, x_3, \ldots, x_N,$

the expected value of X is defined to be the sum

$$E(X) = \sum_{i=1}^{N} x_i P[X = x_i].$$

Use this formula to compute the expected value of the numbers appearing on the top face of a fair die. Explain the meaning of this number.

Solution: Since $P[X = i] = \frac{1}{6}$ for $i = 1, 2, 3, 4, 5, 6$, it follows that

$$E(X) = \sum_{i=1}^{6} i \cdot \frac{1}{6} = \frac{1}{6} \sum_{i=1}^{6} i = \frac{1}{6} \cdot \frac{(6)(7)}{2} = \frac{7}{2}.$$

Thus, if we roll a die n times, add up the outcomes, and divide by n, the result will be close to 3.5. \qed

2. Consider the following random experiment: Assume you have a fair die and you toss it until you get a six on the top face, and then you stop. Let X denote the number of tosses you make until you stop.

(a) Explain why X is a discrete random variable. What are the possible values for X?

Solution: Each time we repeat the experiment, the number of times it takes to get a “6” might differ from what it took the previous time. \qed

(b) For each value x of X, compute $P[X = x]$; this is called the probability mass function, or pmf, of the random variable X.

Solution: The possible values of X are 1, 2, 3, …, and the pmf is

$$P[X = n] = \left(\frac{5}{6}\right)^{n-1} \cdot \frac{1}{6} \quad \text{for} \quad n = 1, 2, 3, \ldots \quad \Box$$
3. Given a discrete random variable X with an infinite number of possible values x_1, x_2, x_3, \ldots

the expected value of X is defined to be the infinite series

$$E(X) = \sum_{i=1}^{\infty} x_i P[X = x_i].$$

Use this formula to compute the expected value random variable X of the previous problem; that is, X is the number of times you need to toss a fair die until you get a six on the top face.

Solution: In order to do this problem, first we consider the general situation in which an experiment consists of repeated independent trials until a specified outcome of probability p, with $0 < p < 1$, occurs. We assume that each trial has two possible outcomes: the one with probability p, and the other with probability $1 - p$. In the case of the fair die, one outcome is to get a six with $p = \frac{1}{6}$, and the other is the outcome of not getting a six. In the general case, the pmf is given by

$$P[X = n] = (1 - p)^{n-1} \cdot p \quad \text{for } n = 1, 2, 3, \ldots$$

Thus,

$$E(X) = \sum_{n=1}^{\infty} n \cdot P[X = n]$$

$$= \sum_{n=1}^{\infty} n \cdot (1 - p)^{n-1} \cdot p$$

$$= p \sum_{n=1}^{\infty} n(1 - p)^{n-1}.$$

Observe that $n(1 - p)^{n-1}$ is the derivative with respect to p of $-(1 - p)^n$. It then follows that

$$E(X) = -p \sum_{n=1}^{\infty} \frac{d}{dp} [(1 - p)^n]$$

$$= -p \left\{ \sum_{n=1}^{\infty} (1 - p)^n \right\}$$

$$= -p \left\{ \frac{1 - p}{1 - (1 - p)} \right\} \quad \text{since } 0 < 1 - p < 1,$$
where we have added up the convergent geometric series \(\sum_{n=1}^{\infty} (1 - p)^n \).

Simplifying we get

\[
E(X) = -p \frac{d}{dp} \left(\frac{1}{p} - 1 \right) = -p \cdot \left(-\frac{1}{p^2} \right) = \frac{1}{p}.
\]

Thus, for the case \(p = \frac{1}{6} \) we get that \(E(X) = 6 \). Hence, on average, it takes six tosses to get a six when rolling a fair die. \(\square \)

4. Let \(M(t) \) denote number of bacteria in a colony of initial size \(N_0 \) which develop mutations in the time interval \([0, t]\). It was shown in the lectures that if there are no mutations at time \(t = 0 \), and if \(M(t) \) follows the assumptions of a Poisson process, then the probability of no mutations in the time interval \([0, t]\) is given by

\[
P_0(t) = P[M(t) = 0] = e^{-\lambda t}
\]

where \(\lambda > 0 \) is the average number of mutations per unit time, or the mutation rate.

Let \(T > 0 \) denote the time at which the first mutation occurs.

(a) Explain why \(T \) is a random variable. Observe that it is a continuous random variable.

\textbf{Solution:} Suppose we start observing the bacterial population at time \(t = 0 \) when its size is \(N_0 \). If we can observe the first mutation, then \(T \) is the time of that observation. If we repeat the experiment, starting with the same number of bacteria \(N_0 \), and under the same conditions, then the value for \(T \) will most likely be different from the previously obtained one. Thus, \(T \) is a random variable. \(\square \)

(b) For any \(t > 0 \), explain why the statement

\[
P[T > t] = P[M(t) = 0]
\]

is true, and use it to compute

\[
F(t) = P[T \leq t].
\]
The function $F(t)$, usually denoted by $F_T(t)$, is called the cumulative distribution function, or cdf, of the random variable T.

Solution: If $T > t$, then no mutation has occurred at time t, and therefore the probability of that event is the same as the probability of the event $[M(t) = 0]$. Hence,

$$P[T > t] = P_0(t) = e^{-\lambda t}, \quad \text{for } t \geq 0$$

and so

$$F_T(t) = P[T \leq t] = 1 - P[T > t] = 1 - e^{-\lambda t}$$

for $t \geq 0$. On the other, if $t < 0$ then $P[T > t] = P[T > 0] = 1$, since T is nonnegative. It then follows that for $t < 0$,

$$P[T \leq t] = 1 - P[T > t] = 1 - 1 = 0$$

and therefore

$$F_T(t) = \begin{cases}
0 & \text{if } t < 0 \\
1 - e^{-\lambda t} & \text{if } t \geq 0.
\end{cases}$$

(c) Compute the derivative $f(t) = F'(t)$ of the cdf F obtained in the previous part.

The function $f(t)$, usually denoted by $f_T(t)$, is called the probability density function, or pdf, of the random variable T.

Solution: First, observe that $f_T(t) = \frac{d}{dt}(1 - e^{-\lambda t}) = \lambda e^{-\lambda t}$ for $t > 0$. The function F_T is not differentiable at 0. However, we can define

$$F_T(t) = \begin{cases}
0 & \text{if } t \leq 0 \\
\lambda e^{-\lambda t} & \text{if } t > 0,
\end{cases}$$

and still get a valid pdf. □

5. Given a continuous random variable X with pdf f_X, the expected value of X is defined to be

$$E(X) = \int_{-\infty}^{\infty} x f_X(x) \, dx.$$

Use this formula to compute the expected value of the T, where T is the random variable defined in the previous problem; that is, $T > 0$ is he time at which the first mutation occurs for a bacterial colony exposed to a virus at time $t = 0$, assuming that there are no mutations at that time. How does this value relate to the average mutation rate λ?
Solution: \(E(T) = \int_{-\infty}^{\infty} t f_T(t) \, dt = \int_{0}^{\infty} t \lambda e^{-\lambda t} \, dt\). Integrating by parts we get

\[
E(T) = -te^{-\lambda t}\bigg|_{0}^{\infty} + \int_{0}^{\infty} e^{-\lambda t} \, dt
\]

\[
= 0 + \left[-\frac{1}{\lambda} e^{-\lambda t} \right]_{0}^{\infty}
\]

\[
= \frac{1}{\lambda}.
\]

Thus, the expected value of \(T\) is the reciprocal of \(\lambda\). \(\Box\)