Assignment #6
Due on Friday, February 19, 2010

Read Chapter 4 on the continuous approach to modeling bacterial growth, p. 29, in the class lecture notes webpage at http://pages.pomona.edu/~ajr04747

Do the following problems

1. Suppose the growth of a population is governed by the differential equation

\[
\frac{dN}{dt} = -kN
\]

where \(k \) is a positive constant.

(a) Explain why this model predicts that the population will decrease as time increases.

(b) If the population at \(t = 0 \) is \(N_0 \), find the time \(t \), in terms of \(k \), at which the population will be reduced by half.

2. Consider a bacterial population whose relative growth rate is given by

\[
\frac{1}{N} \frac{dN}{dt} = K
\]

where \(K = K(t) \) is a continuous function of time, \(t \).

(a) Suppose that \(N_0 = N(0) \) is the initial population density. Verify that

\[
N(t) = N_0 \exp \left(\int_0^t K(\tau) \, d\tau \right)
\]

solves the differential equation and satisfies the initial condition.

(b) Find \(N(t) \) if

\[
K(t) = \begin{cases}
1 - t & \text{if } 0 \leq t \leq 1; \\
0 & \text{if } t > 1.
\end{cases}
\]

Sketch the graph of \(N(t) \)
3. For any population (ignoring migration, harvesting, or predation) one can model the relative growth rate by the following conservation principle
\[
\frac{dN}{dt} = \text{birth rate (per capita)} - \text{death rate (per capita)} = b - d,
\]
where \(b \) and \(d \) could be functions of time and the population density \(N \).

(a) Suppose that \(b \) and \(d \) are linear functions of \(N \) given by \(b = b_o - \alpha N \) and \(d = d_o + \beta N \) where \(b_o, d_o, \alpha \) and \(\beta \) are positive constants. Assume that \(b_o > d_o \). Sketch the graphs of \(b \) and \(d \) as functions of \(N \). Give a possible interpretation for these graphs.

(b) Find the point where the two lines sketched in part (a) intersect. Let \(K \) denote the first coordinate of the point of intersection. Show that
\[
K = \frac{b_o - d_o}{\alpha + \beta}.
\]
\(K \) is the carrying capacity of the population.

(c) Show that
\[
\frac{dN}{dt} = r N \left(1 - \frac{N}{K} \right)
\]
where \(r = b_o - d_o \) is the intrinsic growth rate.

4. The following equation models the evolution of a population that is being harvested at a constant rate:
\[
\frac{dN}{dt} = 2N - 0.01N^2 - 75.
\]
Find equilibrium solutions and sketch a few possible solution curves. According to model, what will happen if at time \(t = 0 \) the initial population densities are 40, 60, 150, or 170?

5. Consider the modified logistic model
\[
\frac{dN}{dt} = r N \left(\frac{N}{K} \right) \left(\frac{N}{T} - 1 \right)
\]
where \(N(t) \) denotes the population density at time \(t \), and \(0 < T < K \).

(a) Find the equilibrium solutions and determine the nature of their stability.

(b) Sketch other possible solutions to the equation.

(c) Describe what the model predicts about the population and give a possible explanation.