Solutions to Part I of Exam 2

1. Suppose that the rate at which a drug leaves the bloodstream and passes into the urine at a given time is proportional to the quantity of the drug in the blood at that time.

 (a) Write down and solve a differential equation for the quantity, $Q = Q(t)$, of the drug in the blood at time, t, in hours. State all the assumptions you make and define all the parameters that you introduce.

 Solution: By the conservation principle for a one–compartment model,
 \[
 \frac{dQ}{dt} = \text{Rate of } Q \text{ in} - \text{Rate of } Q \text{ out},
 \]
 where
 \[
 \text{Rate of } Q \text{ in} = 0
 \]
 and
 \[
 \text{Rate of } Q \text{ out} = kQ,
 \]
 for some constant of proportionality k. Thus, Q satisfies the differential equation
 \[
 \frac{dQ}{dt} = -kQ,
 \]
 which has solution
 \[
 Q(t) = ce^{-kt} \quad \text{for all } t \geq 0.
 \]
 for some constant c. □

 (b) Suppose that an initial dose of Q_o is injected directly into the blood, and that 20% of that initial amount is is left in the blood after 3 hours. Based on the solution you found in the previous part, write down $Q(t)$ for this situation and sketch its graph.

 Solution: If $Q(0) = Q_o$, then $c = Q_o$. Thus,
 \[
 Q(t) = Q_o e^{-kt} \quad \text{for all } t \geq 0.
 \]
 If $Q(3) = 0.2Q_o$, then
 \[
 0.2Q_o = Q_o e^{-3k},
 \]
from which we obtain that
\[k = -\frac{1}{3} \ln(0.2) \approx 0.54. \]

It then follows that
\[Q(t) = Q_0 e^{\frac{k}{3} \ln(0.2)} \approx Q_0 e^{-0.54t}. \]

\[\square \]

Figure 1: Sketch of graph of \(Q(t) \)

(c) How much of the drug is left in the patient’s body after 6 hours if the patient is given 100 mg initially?

Solution: Compute

\[
Q(6) = 100e^{\frac{6}{3} \ln(0.2)} = 100e^{2\ln(0.2)} = 100(0.2)^2 = \frac{100}{25} = 4.
\]

Thus, there will be 4 mg of the drug left in the patient after 6 hours. \[\square \]

2. Suppose a bacterial colony has \(N_o \) bacteria at time \(t = 0 \). Let \(M(t) \) denote the number of bacteria that develop certain mutation during the time interval \([0, t]\). Assume that, for small \(\Delta t > 0 \),

\[
M(t + \Delta t) - M(t) \approx a (\Delta t) N(t), \quad (1)
\]
where \(a \) is a positive constant, and \(N(t) \) is the number of bacteria in the colony at time \(t \).

(a) Give an interpretation to what the expression in (1) is saying. In particular, provide a meaning for the constant, \(a \), known as the mutation rate.

Solution: The expression in (1) postulates that the number of mutations occurring in the time interval \([t, t + \Delta t]\) is proportional to the length of the interval, \(\Delta t \), and the number of cells, \(N(t) \), present at time \(t \). The constant of proportionality, \(a \), can be interpreted as the fraction of cells that mutate in a unit of time.

(b) Let \(\mu(t) = E(M(t)) \) denote the expected value of the number of mutations in the time interval \([0, t]\). It is possible to prove, using the expression in (1), that \(\mu = \mu(t) \) is differentiable and satisfies the differential equation

\[
\frac{d\mu}{dt} = aN(t).
\]

Solve the differential equation in (2) assuming that \(N(t) \) grows in time according to a Malthusian model with per–capita growth rate \(k \), and that there are no mutant bacteria at time \(t = 0 \).

Solution: Assuming that the bacterial colony is growing according the Malthusian model

\[
\begin{align*}
\frac{dN}{dt} &= kN \\
N(0) &= N_o,
\end{align*}
\]

where \(k = \frac{\ln 2}{T} \), \(T \) being the doubling time or the duration of a division cycle, then \(N(t) = N_o e^{kt} \). Substituting this into (2) we get

\[
\frac{d\mu}{dt} = aN_o e^{kt},
\]

which can be integrated to yield

\[
\mu(t) - \mu(0) = \int_0^t aN_o e^{k\tau} \, d\tau = \frac{a}{k} N_o (e^{kt} - 1).
\]
If there no mutations at time $t = 0$, $\mu(0) = 0$, and so

$$\mu(t) = \frac{a}{k}(N_0 e^{kt} - N_0),$$

or

$$\mu(t) = \frac{a}{k}(N(t) - N_0).$$

Hence, the average number of mutations which occur in the interval $[0, t]$ is proportional to the population increment during that time period. The constant of proportionality is the mutation rate divided by the growth rate. \qed