Assignment #9

Due on Monday, April 25, 2011

Read Section II.1 on Two-Dimensional Systems, pp. 51-63, in Hale's text.

Read Chapter X on The Direct Method of Liapunov, pp. 311–319, in Hale's text.

Read Chapter 4 on *Continuous Dynamical Systems*, starting on page 47, in the class lecture notes.

Background and Definitions

- In the problems in this problem set, a dot on top of a variable will denote the derivative with respect to t of that variable; for instance $\dot{x} = \frac{dx}{dt}$.
- If V is a real valued C^1 function defined on an open region U in $|Rtwo\rangle$, we define $\dot{V}(x,y)$ to by

$$\dot{V}(x,y) = \frac{d}{dt}(V(\varphi_t(x,y))) = \frac{\partial V}{\partial x}\dot{x} + \frac{\partial V}{\partial y}\dot{y} = \frac{\partial V}{\partial x}f(x,y) + \frac{\partial V}{\partial y}g(x,y).$$

That is, $\dot{V}(x,y)$ is the rate of change of V along the orbit of system of the 2-dimensional system

$$\begin{cases} \dot{x} = f(x,y) \\ \dot{y} = q(x,y), \end{cases} \tag{1}$$

going through (x, y).

1. Let A and Q be 2×2 matrices, and assume that Q is invertible. Suppose that (x(t), y(t)) is a solution to the system $\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = A \begin{pmatrix} x \\ y \end{pmatrix}$. Show that by making the change of variables $\begin{pmatrix} u \\ v \end{pmatrix} = Q^{-1} \begin{pmatrix} x \\ y \end{pmatrix}$, we obtain a solution to the system

$$\begin{pmatrix} \dot{u} \\ \dot{v} \end{pmatrix} = Q^{-1} A Q \begin{pmatrix} u \\ v \end{pmatrix}.$$

- 2. Consider the linear system $\begin{cases} \dot{x} = -y \\ \dot{y} = 2x + 3y \end{cases}$
 - (a) Write the system in the matrix form $\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = A \begin{pmatrix} x \\ y \end{pmatrix}$.

- (b) Let $Q = \begin{pmatrix} 1 & 1 \\ -1 & -2 \end{pmatrix}$, and set $Q^{-1}AQ = J$. Give the general solution of the system $\begin{pmatrix} \dot{u} \\ \dot{v} \end{pmatrix} = J \begin{pmatrix} u \\ v \end{pmatrix}$, and sketch the phase portrait in the uv-plane.
- (c) Give the general solution of the system $\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = A \begin{pmatrix} x \\ y \end{pmatrix}$. and sketch the phase portrait.
- (d) Determine the nature of the stability of the equilibrium point (0,0).
- 3. Let $\binom{x(t)}{y(t)}$ denote a solution of the two-dimensional linear system $\binom{\dot{x}}{\dot{y}} = A\binom{x}{y}$, and suppose that $\lim_{t\to\infty} \sqrt{(x(t))^2 + (y(t))^2} = 0$. Use the continuity of the linear transformation $\binom{u}{v} = Q^{-1}\binom{x}{y}$, where Q is an invertible 2×2 matrix, to show that the solution $\binom{u(t)}{v(t)} = Q^{-1}\binom{x(t)}{y(t)}$ of the system

$$\begin{pmatrix} \dot{u} \\ \dot{v} \end{pmatrix} = J \begin{pmatrix} u \\ v \end{pmatrix}, \quad \text{where } J = Q^{-1}AQ,$$

also satisfies the property $\lim_{t\to\infty} \sqrt{(u(t))^2 + (v(t))^2} = 0$.

Hence, prove that if $\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = A \begin{pmatrix} x \\ y \end{pmatrix}$ has an asymptotically stable equilibrium point, (0,0), then so does the system $\begin{pmatrix} \dot{u} \\ \dot{v} \end{pmatrix} = J \begin{pmatrix} u \\ v \end{pmatrix}$, and vice versa.

4. Assume that the functions f and g in the system (1) are C^1 functions defined on all of \mathbb{R}^2 . Let $V: \mathbb{R}^2 \to \mathbb{R}$ denote a C^1 function satisfying

$$V(x,y) \to \infty$$
 as $||(x,y)|| \to \infty$,

and $\dot{V}(x,y) \leq 0$ for all $(x,y) \in \mathbb{R}^2$.

- (a) Show that the set $\{\theta(t, x, y) \mid t \ge 0\}$ is bounded for any $(x, y) \in \mathbb{R}^2$.
- (b) Show that $\dot{V}(\overline{x}, \overline{y}) = 0$ for all $(\overline{x}, \overline{y}) \in \omega(\gamma_{(p,q)})$ and any $(p,q) \in \mathbb{R}^2$.
- 5. Let $V(x,y) = ax^2 + 2bxy + cy^2$, where a, b and c are real numbers. Show that if a > 0 and $ac b^2 > 0$, then V is positive definite in \mathbb{R}^2 .