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Solutions to Review Problems for Exam 2

1. Let T': R? — R? denote the linear transformation which maps the parallelogram

spanned by
Ul:(—i) and v2:( i)

to the parallelogram spanned by

e (1) (1)

(a) Give the matrix representation, My, relative to the standard basis in R

Solution: Assume that T: R? — R? is linear and that T'(v;) =
wy and T'(vy) = we. Writing v; and vy in terms of the standard
basis in R?, we have that

V1 = 261 — €9

and
Vo = 261 + €.

Thus, applying T" and the linearity of T" we then have that
2T(61) — T(Gz) = W1 (1)

and
2T (e1) + T'(e2) = wo. (2)

We can solve (1) and (2) simultaneously to obtain that

T(er) = <1/02) and (é) .

It then follows that the matrix representation, Mr, or T, relative
to the standard basis in R? is

Mr=[7(e) Tl 1= (4, )

(b) Compute det(T"). Does T preserve orientation?
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Solution: Compute
1
det(T") = det(Mr) = —3

Since, det(T") < 0, T reverses orientation. O
(¢) Show that T is invertible and compute the inverse of T.

Solution: Since det(T) # 0, T is invertible, and the matrix
representation for the inverse of T' is given by

gt (4 )1 )

Consequently, the inverse of T"is given by

()= (0 ) () =(*)

forall<$)€R2. ([l

)

(d) Does T have real eigenvalues? If so, compute them and their corresponding
eigenspaces.

Solution: The eigenvalues of T are scalars, A, for which the

system of equations
(Mr—X)v=0 (3)

has nontrivial solutions. The system in (3) has nontrivial solutions
if and only if the matrix

-1
My = Al = ( 1/2 —/\)

is singular; this, in turn, is the case if and only if
det(My — \I) =0,

or

)\2—520

1 1
Thus, A\ = ——— and \y = —
V2 V2

are eigenvalues of T
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To find the eigespace corresponding to A; we solve the homogenous
system in (3) for A = A;. We can do this by performing row
operations of the augmented matrix

( % .y >
1 1 | o)’
> ¥
which is row—equivalent to the matrix
1 V2] 0
0 0 | 0)
Thus, the system in (3) for A = A; is equivalent to the homoge-
neous equation

N
[\

J}1+\/§ZL’2:0,

which has solutions

Thus, the eigenspace of T' associated with \; = — is

o) s (V7))

Similarly, we can compute the eigenspace of T associated with

)\intObe
B - { (V7))

Sl

V2

2. Define T: R? — R? by
T(v) = Av for all v € R?,

where A is the 3 x 3 matrix given by

1 2 1
A= 6 -1 O
-1 -2 -1

Find all eigenvalues and corresponding eigenspaces for the transformation 7.
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Solution: First, observe that the third row of A is a multiple of
the first and, therefore, A is singular. This implies that A\ = 0 is an
eigenvalue of A. to find the corresponding eigenspace, we solve the
homogeneous system

Av =0 (4)

for v € R3. In order to do this, we reduce the augmented matrix

1 2 1 ] 0
6 -1 0 | 0
1 -2 -1 | 0
to

1 0 1/13 | 0
0 1 6/13 | 0
0 0 0 | 0

Thus the system in (4) is equivalent to
T, + %ZL‘g =0
To + 1%5133 = O,

which can be solved to yield the solutions

T 1
) =1 6
T3 —13

Thus, the eigenspace of A associated with A\; = 0 is
E4(0) = span 6
—13

Next, we see if A has other eigenvalues. In order to do this, we look
for values of A for which the homogeneous system

(A—X)v=0 (5)

has nontrivial solutions. The system in (5) has nontrivial solutions if
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and only if det(A — AI) = 0, where

1—AX 2

det(A—X) = | 6 —1—2\
—1 -2

—1-=A
- (1_)‘) -9

1
0

—1-A

0

—1-A

-2

Spring 2013

0
—1-A

= 1=-NA+1*+1200+1)—12— (A +1)

= SAA+4)(A—3).

N

6
-1

It then follows that \; = 0, Ay = —4 and A3 = 3 are eigenvalues of A.
We have already compute E4(\1). To compute the eigenspace corre-
sponding to Ay, we solve the homogeneous system (5) with A = Ay =
—4. We do this by reducing the augmented matrix

5 2 1
6 3 0
-1 -2 3
to
1 0 1
0 1 -2
0 0 0

Thus the system in (5) with A = —4 is equivalent to

T + T3
172—21E3

which can be solved to yield the solutions

T
i) =t
Zs3

Thus, the eigenspace of A associated with Ay = —4 is

E4(—4) = span

1

—2
—1

0

)

0

0
0
0

0

0,

1

—2
—1

5

~1-A
—2

i
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Similar calculations show that

2
EA(3) = span 3
-2

3. Find a value of d for which the matrix
1 -2
=5 7a)

Show that, for that value of d, A = 0 is an eigenvalue of A. Give the eigenspace
corresponding to 0. What is the dimension of F4(0)?

is not invertible.

Solution: The matrix A fails to be invertible when det(A) = 0. This
occurs when d = —6. For this value of d, the matrix A becomes

a=(5 )

and observe that its second column is a multiple of the first. There-
fore, the columns of A are linearly dependent; hence, the system

Av=0 (6)

has nontrivial solutions and therefore A = 0 is an eigenvalue of A. To
find the corresponding eigenspace, observe that the system in (6) is
equivalent to the equation

T —21’2 = 0,

(2)-(3)

Thus, the eigenspace of A associated with A = 0 is

o= 1)}

Therefore, dim(E4(0)) = 1. O

which has solutions
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4. Use the fact that det(AB) = det(A) det(B) for all A, B € M(n,n) to compute
det(A™1), provided that A is invertible.

Proof: Assume that A is invertible with inverse A~!. Then,
AtA =1,

where [ is the n x n identity matrix. Taking determinants on both sides of the
equation yields that
det(A7TA) =1,

from which we get that
det(A™) det(A) = 1.

This, since det(A) # 0 because A is invertible, we get that

1
 det(A)

det(A™h)

5. Let A and B be n X n matrices. Show that if AB is invertible, then so is A.

Proof: Suppose that AB is invertible. Then, there exists an n x n matrix, C,

such that
(AB)C =1,
where [ is the n x n identity matrix. Thus, by associativity of matrix multipli-
cation,
A(BC) =1,
which shows that A has a right—inverse and is therefore invertible. O

6. Let A be a 3 x 3 matrix satisfying A% — 642 — 24 + 121 = O, where [ is the
3 x 3 identity matrix and O is the 3 x 3 zero matrix.

(a) Prove that A is invertible and given a formula for computing its inverse in
terms of I, A and A2
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Solution: We can solve the equation A% — 642 — 24 + 12/ = O
for 127 and then divide by 12 to get that

1
A —[+1A—iA2 =1,
6 27 12

which shows that A has a right—inverse and is therefore invertible

with ) | |
Al =T+ A — —A%
6 2 12

O

(b) Prove that if A is an eigenvalue of A, then \* — 6A\* — 2\ +12 = 0. Deduce
therefore that A is one of 6, V2 or —v/2.

Proof: Let X\ be an eigenvalue of A. Then, there exists a nonzero vector,
v, in R3 such that
Av = .

Multiplying on both sides by A we then get that
A%y = MAv = A\ ) = N,
Multiplying the last equation by A we then get that
Ay = M.

Thus, applying A% —6A2? —2A 4+ 121 = O to to v we get that

(A* —6A% — 24 + 121 )v = Ow,
which, by the distributive property, implies that

A3y — 6A%0 — 2Av + 120 = 0.

Thus,
Av — 6A%0 — 200 + 120 = 0,

or
(A* —6A% — 2\ + 12)v = 0,

from which we get that
A —6A2 —2) +12 =0,

since v 1S nonzero.

Observe that A3 — 6A2 — 2) + 12 factors into (A —6)(A++v2)(A —+/2). O
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7. Let T: R? — R? be given by T'(v) = Av for all v € R?, where A is a 2 x 2
matrix. Let area(P(vq,v2)) denote the are of the parallelogram determined by
the vectors v; and vs. Prove that

areaP((T(v1),T(v9))) = | det(A)| - area( P(vq, v2)).

Solution: Observe that the matrix [ T'(vy) T(ve) | = [ Avy Avs |
can be written as

[T(v1) T(v2) ] =A[v1 va],

by the definition of the matrix product. Thus, taking the determinant
on both sides we have

det([T(v1) T(v2)]) = det(A[vy vy ])

= det(A)det([ v1 vq]).
Thus, taking the absolute value on both sides,
area(P(T(v1),T(vy))) = |det(A)]| - area( P(vy, v9)).

8. Let u denote a unit vector in R and define f: R® — R" by
f(w) = (u,v)u for all v € R",
where (-, -) denotes the Euclidean inner product in R".

(a) Verify that f is linear.

Solution: For v,w € R", compute

flo+w) = (u,v+w)u
= ((u,0) + (v, w))u
= (u,v)u+ (u, w)u

= flv)+ f(w).

Similarly, for a scalar ¢ and v € R",

flev) = (u,cv)u

= c(u,v)u

= cf(v).
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(b) Give the image, Z, and null space, N, of f, and compute dim(Zy).
Solution: The image of f is the set
Zy ={w e R" | w= f(v) for some v € R"}.

We claim that Z; = span{u}. To see why this is so, first observe
that f(u) = (u,u)u = ||u|/*u = u, since u is a unit vector. Thus,

f(u) = u. (7)

Let w € span{u}; then w = cu, for some scalar ¢. Now, by the
linearity of f,
w=cu=cf(u) = f(cu),

where we have used (7). We have therefor shown that

w € span{u} = w € Iy;

that is,

span{u} C Z;. (8)
Next, suppose that w € Z; then, w = f(v) for some v € R, so
that

w = (u,v)u € span{u}.

Thus,

Ty C span{u}. 9)
Combining (8) and (9) yields that

T = span{u}.
It then follows that

dim(Zy) = 1. (10)

The null space of f is the set
Ny ={veR"| f(v) =0}.

Thus,
ve Ny iff (u,v)u=0
iff (u,v) =0,

since u # 0. It then follows that
Ny ={veR"| (u,v) =0}

that is, Ny is the space of vectors which are orthogonal to u. [J
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(¢) The Dimension Theorem for a linear transformations, 7': R" — R™, states
that
dim(N7) + dim(Zr) = n.

Use the Dimension Theorem to compute dim(NF).

Solution: Using the dimension theorem and (10) we get that
dim(Nf) +1=n,

which implies that
dim(Ny) =n — 1.



