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Solutions to Review Problems for Exam 3

1. Find the equilibrium solutions of following autonomous differential equations
and determine the nature of the satiability of the equilibrium solutions. Sketch
some possible solution curves. If possible, describe the long–term behavior of
the solutions.

(a)
dx

dt
= (x− 3)(x− 5)

Solution: Set f(x) = (x−3)(x−5), for all x ∈ R, or f(x) = x2−8x+15,
for all x ∈ R. We would like to analyze the ODE

dx

dt
= f(x), (1)

where the graph of f is sketched in Figure 1. We see from the sketch that
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Figure 1: Sketch of f(x) versus x

the ODE in (1) has equilibrium points at

x1 = 3 and x2 = 5.

We can also see from the sketch of f(x) versus x in Figure 1 that f ′(x1) < 0;
so that, x1 is asymptotically stable, by the Principle of Linearized Stability
(PLS); and f ′(x2) > 0; so that, x2) is unstable by the PLS.

Possible solutions of (1) have been sketched in Figure 2. We see in Figure
2 that, if x(0) < 5, then

lim
t→∞

x(t) = 3.
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Figure 2: Possible Solutions of (1)

On the other hand, if x(0) > 5, the x(t) increases without bound as t
increases. �

(b)
dx

dt
= (1− x)(x− 2)2

Solution: Put

f(x) = (1− x)(x− 2)2, for x ∈ R.

We analyze the ODE
dx

dt
= f(x). (2)

The graph of f(x) versus x is sketched in Figure 3. We see from the sketch
in Figure 3 that the ODE in (2) has equilibrium solutions at

x1 = 1 and x2 = 2.

We also see from the sketch that f ′(x1) < 0; so that, x1 = 1 is asymptot-
ically stable, by the PLS. On the other hand, since f ′(x2) = 0, the PLS
does not apply in this case.
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Figure 3: Sketch of f(x) versus x

To determine the stability or non–stability of x2, observe that f(x) <
0 for 1 < x < 2; so that, if x(0) < 2, but very close to 2, x(t) will
decrease, according to (2). Hence, x(t) will tend away from 2 as t increases.
Therefore, x2 = 2 is unstable.

Sketches of possible solutions on (2) are shown in Figure 4. From the
sketches of possible solutions in Figure 4, we see that, if x(0) > 2, the

lim
t→∞

x(t) = 2.

On the other hand, is x(0) < 2, then

lim
t→∞

x(t) = 1.

�

2. The following equation models the evolution of a population that is being har-
vested at a constant rate:

dN

dt
= 2N − 0.01N2 − 75.

Find equilibrium solutions and sketch a few possible solution curves. According
to model, what will happen if at time t = 0 the initial population densities are
40, 60, 150, or 170.
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Figure 4: Possible Solutions of (2)

Solution: Put
f(N) = 2N − 0.01N2 − 75. (3)

We would like to analyze the ODE

dN

dt
= f(N). (4)

Observe that the quadratic polynomial in (3) can be factored into

f(N) = −0.01(N − 50)(N − 150).

Thus, the ODE in (4) has two equilibrium solutions at

N1 = 50 and N2 = 150.

To determine the stability properties of these equilibrium solutions, consider
the sketch of the graph of f(N) versus N shown in Figure 5. We see from the
sketch in Figure 5 that f ′(N1) > 0; so that, N1 = 50 is unstable by the PLS.
Similarly, we see that f ′(N2) < 0; so that, N2 = 150 is asymptotically stable
by the PLS.
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Figure 5: Sketch of graph of f(N) versus N

Figure 6 shows sketches of possible solutions of the ODE in (4) obtained using
pplane.

Examination of the sketches in Figure 6 leads to the following conclusions:

• If the initial population, N(0), is less than 50, the population will die out
in finite time.

• If N(0) > 50,
lim
t→∞

N(t) = 150.

�

3. For the following systems, sketch nullclines; find equilibrium points; apply the
principle of Linearized stability (when applicable) to determine the stability
properties of the equilibrium points; describe the local behavior trajectories
near the equilibrium points; and sketch the phase portraits.

(a)

{
ẋ = x2 − y2 − 1;
ẏ = 2y.

Solution: The ẋ = 0–nullcline is

x2 − y2 = 1 (hyperbola),

and the ẏ = 0–nullcline is

y = 0 (the x–axis).
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Figure 6: Possible Solutions of (4)

These are sketched in Figure 7. We see from the sketch in the figure that
there are two equilibrium points:

(−1, 0) and (1, 0).

To determine the stability properties of the equilibrium points, we look at
the derivative of the vector field

F (x, y) =

(
x2 − y2 − 1

2y

)
, for (x, y) ∈ R2;

namely

DF (x, y) =

(
2x −2y
0 2

)
, for (x, y) ∈ R2.

Computing

DF (−1, 0) =

(
−2 0
0 2

)
,

we see that the eigenvalues of DF (−1, 0) are −2 and 2; hence, by the PLS,
(−1, 0) is a saddle point.
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Figure 7: Sketch of Nullclines of the System in Problem 3(a)

Similarly, since

DF (1, 0) =

(
2 0
0 2

)
,

the eigenvalues of DF (1, 0) are both positive; hence, (1, 0) is a source.

A sketch of possible trajectories obtained using pplane is shown in Figure
8. �

(b)

{
ẋ = y − y2 + 2;
ẏ = 2x2 − 2xy,

Solution: The ẋ = 0–nullclines are the lines

y = −1 and y = 2,

and the ẏ = 0–nullclines are the lines

x = 0 (the y–axis) and y = x.

These are sketched in Figure 9. We see from the sketch in the figure that
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Figure 8: Sketch of Phase Portrait of the System in Problem 3(a)

there are four equilibrium points:

(−1,−1), (0,−1), (0, 2) and (2, 2).

To determine the stability properties of the equilibrium points, we look at
the derivative of the vector field

F (x, y) =

(
y − y2 + 2
2x2 − 2xy

)
, for (x, y) ∈ R2;

namely

DF (x, y) =

(
0 1− 2y

4x− 2y −2x

)
, for (x, y) ∈ R2.

Compute the characteristic polynomial of

DF (−1,−1) =

(
0 3

−2 2

)
,

to get p(λ) = λ2 − 2λ + 6. Thus, the eigenvalues of the linearization at
(−1,−1) are 1 ± i

√
5, which are complex with positive real part. Hence,

by the PLS, (−1,−1) is a spiral source.
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Figure 9: Sketch of Nullclines of the System in Problem 3(b)

Applying the PLS at the other equilibrium points, we get

DF (0,−1) =

(
0 3
2 0

)
,

which has eigenvalues ±
√
6, so that, (1, 0) is a saddle point;

DF (0, 2) =

(
0 −3

−4 0

)
,

which has eigenvalues ±
√
12, so that, (0, 2) is a saddle point;

DF (2, 2) =

(
0 −3
4 −4

)
,

which has eigenvalues −2 ± 2
√
2, which are complex with negative real

part; so that, (−2, 2) is a s spiral sink.

A sketch of possible trajectories obtained using pplane is shown in Figure
10. �
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Figure 10: Sketch of Phase Portrait of the System in Problem 3(b)

(c)

{
ẋ = 4− 2y;
ẏ = 12− 3x2.

Solution: The ẋ = 0–nullcline is the line

y = 2,

and the ẏ = 0–nullclines are the lines

x = −2 and x = 2.

These are sketched in Figure 11. We see from the sketch in the figure that
there are two equilibrium points:

(−2, 2) and (2, 2).

To determine the stability properties of the equilibrium points, we look at
the derivative of the vector field

F (x, y) =

(
4− 2y
12− 3x2

)
, for (x, y) ∈ R2;
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Figure 11: Sketch of Nullclines of the System in Problem 3(c)

namely

DF (x, y) =

(
0 −2

−6x 0

)
, for (x, y) ∈ R2.

Computing

DF (−2, 2) =

(
0 −2
12 0

)
,

we see that the eigenvalues of DF (−2, 2) are ±i2
√
6, which are purely

imaginary; hence, the PLS does not apply in this case.

Next, compute

DF (2, 2) =

(
0 −2

−12 0

)
,

which a negative, −2
√
6, and a positive, 2

√
6, eigenvalue. Thus, by the

PLS, (2, 2) is a saddle point.

A sketch of possible trajectories obtained using pplane is shown in Figure
12. Observe that the sketch in Figure 12 suggests that (−2, 2) is a center
for the system in Problem 3(c). �
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Figure 12: Sketch of Phase Portrait of the System in Problem 3(c)

(d)

{
ẋ = x− x3;
ẏ = −y,

Solution: The ẋ = 0–nullclines are the lines

x = −1, x = 0 and x = 1,

and the ẏ = 0–nullcline is

y = 0 (the x–axis).

These are sketched in Figure 13. We see from the sketch in the figure that
there are three equilibrium points:

(−1, 0), (0, 0) and (1, 0).

To determine the stability properties of the equilibrium points, we look at
the derivative of the vector field

F (x, y) =

(
x− x3

−y

)
, for (x, y) ∈ R2;
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Figure 13: Sketch of Nullclines of the System in Problem 3(d)

namely

DF (x, y) =

(
1− 3x2 0

0 −1

)
, for (x, y) ∈ R2.

Computing

DF (±1, 0) =

(
−2 0
0 −1

)
,

which has negative eigenvalues −2 and −1; hence, by the PLS, (−1, 0) and
(1,0) are sinks.

Similarly, since

DF (0, 0) =

(
1 0
0 −1

)
,

real eigenvalues of opposite signs, we conclude that (0, 0) is a saddle point,
by the PLS.

A sketch of possible trajectories obtained using pplane is shown in Figure
14. �
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Figure 14: Sketch of Phase Portrait of the System in Problem 3(d)

4. Gradient Systems. Let F be a real–valued function with continuous partial
derivatives defined in some domain, D, of R2. The system(

ẋ
ẏ

)
= ∇F (x, y)

is called a gradient system.

Let F : R2 → R be given by F (x, y) = x2 − y2, for all (x, y) ∈ R2.

(a) Write down the gradient system associated with the function F .

Solution: The gradient of F is

∇F (x, y) =

(
2x

−2y

)
, for all (x, y) ∈ R2, (5)

and the corresponding system is
dx

dt
= 2x;

dy

dt
= −2y.

(6)
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�
(b) Find all equilibrium points of the system obtained in part (a) and deter-

mine the nature of their stability.

Solution: The only equilibrium point of the system in (6) is the origin,
and it is a saddle point. �

(c) Sketch the graph of the function F and sketch its level sets.

Solution: A sketch of the graph of F in (5), obtained usingWolframAlphaR⃝,
is shown in Figure 15. A sketch of the level sets of F , also obtained using

Figure 15: Sketch of Graph of F in (5)

WolframAlpha R⃝, is shown in Figure 16. �
(d) Sketch the phase portrait of the system obtained in part (a).

Solution: A sketch of the phase portrait of the system in (6) is shown
in Figure 17. We note that the trajectories in the phase–portrait of the
system in (6) are perpendicular to the level sets of F . This is to be expected
be cause the gradient of a function if perpendicular to the level sets of the
function. �

5. Negative Gradient Flows. Let f : R2 → R denote a twice differentiable
function with continuous partial derivatives. Consider the negative gradient
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Figure 16: Sketch of Level Sets of F in (5)

system (
ẋ
ẏ

)
= −∇f(x, y). (7)

(a) Let (x(t), y(t)) denote a solution curve of the system in (7) that contains
no equilibrium points of (7). Show that f is strictly decreasing (with
increasing t) along this trajectory.

Solution: Rewrite the system in (7) as
dx

dt
= −∂f

∂x
(x, y);

dy

dt
= −∂f

∂y
(x, y),

(8)

and let (x(t), y(t)) denote a trajectory of the system that contains no equi-
librium points of (7).

We consider the values of f on the trajectory (x(t), y(t)); namely, f(x(t), y(t)).
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Figure 17: Sketch of Phase Portrait of System in (6)

Use the Chain Rule to compute

d

dt
[f(x(t), y(t))] =

∂f

∂x
(x, y) · dx

dt
+

∂f

∂y
(x, y) · dy

dt
;

so that, using the equations in (8),

d

dt
[f(x(t), y(t))] = −∂f

∂x
(x, y) · ∂f

∂x
(x, y)− ∂f

∂y
(x, y) · ∂f

∂y
(x, y)

= −

[(
∂f

∂x
(x, y)

)2

+

(
∂f

∂y
(x, y)

)2
]
,

or
d

dt
[f(x(t), y(t))] = −∥∇f(x, y)∥2. (9)

It follows from (9) and the assumption that (x(t), y(t)) contains no equi-
librium points of the system (7) that

d

dt
[f(x(t), y(t))] < 0, for all t.
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Hence, f is strictly decreasing (with increasing t) along the trajectory
(x(t), y(t)). �

(b) Let (x(t), y(t)) denote a solution curve of the system in (7) that contains
no equilibrium points of (7). Explain why this trajectory cannot be a cycle.

Solution: Suppose, by way of contradiction, that a trajectory, (x(t), y(t))
of the system in (7) that contains no equilibrium points of (7) is also a
cycle. There there exists T > 0 such that

(x(T ), y(T )) = (x(0), y(0)).

Then,
f(x(T ), y(T )) = f(x(0), y(0)).

However, this contradicts the result from part (a), which says that

f(x(T ), y(T )) < f(x(0), y(0)),

since f is strictly decreasing on the trajectory. This contradiction shows
that this trajectory cannot be a cycle. �

6. The Linear Pendulum Equation. The pendulum equation (without fric-
tion),

ℓθ̈ = −g sin(θ), (10)

can be linearized about the equilibrium position θ = 0 to yield the linear equa-
tion

ℓθ̈ = −gθ. (11)

The equation in (11) is the linearization of the equation in (10) and corresponds
to oscillations of very small amplitude.

(a) Nondimsionalize the equation in (11) by introducing a dimensionless vari-
able

τ =
t

λ
. (12)

What is the value of the parameter λ in terms of ℓ and g?

Solution: Use the Chain Rule to compute

dθ

dτ
=

dθ

dt
· dt
dτ

,
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where, according to (12),
dt

dτ
= λ;

so that,
dθ

dτ
= λ

dθ

dt
.

Differentiating one more time and applying the Chain Rule again,

d2θ

dτ 2
= λ2d

2θ

dt2
.

Thus, using (11),
d2θ

dτ 2
= −λ2g

ℓ
θ.

Setting
λ2g

ℓ
= 1, (13)

we then get that
d2θ

dτ 2
= −θ, (14)

where, according to (13),

λ =

√
ℓ

g
. (15)

�
(b) Solve the equation obtained in part (a) by first performing a phase–plane

analysis.

Solution: Turn the equation in (14) into a two–dimensional system, by
setting

x = θ (16)

and

y =
dθ

dτ
,

to get the system 
dx

dτ
= y

dy

dτ
= −x,

(17)

by virtue of (14).
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The system in (17) is a linear system that can be solved by means of the
fundamental matrix(

cos(τ) sin(τ)
− sin(τ) cos(τ)

)
, for τ ∈ R,

to yield the general solution(
x(τ)
y(τ)

)
=

(
cos(τ) sin(τ)

− sin(τ) cos(τ)

)(
c1
c2

)
, for τ ∈ R,

and arbitrary constants c1 and c2, from which we obtain that

x(τ) = c1 cos(τ) + c2 sin(τ), for τ ∈ R;

which, in view of (16), yields the general solution of the ODE in (14):

θ(τ) = c1 cos(τ) + c2 sin(τ), for τ ∈ R. (18)

Next, writing τ in terms of t, according to (12) and (13), we can express θ
in (18) in terms of t to obtain the general solution

θ(t) = c1 cos

(
t√
ℓ/g

)
+ c2 sin

(
t√
ℓ/g

)
, for t ∈ R. (19)

�
(c) Compute the period, T , of oscillations of solutions of (11) in terms of ℓ

and g.

Solution: Note that the function defined in (19) is periodic of period T
given by the expression

T√
ℓ/g

= 2π,

from which we get that

T = 2π

√
ℓ

g
.

�
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Figure 18: SIR Compartments

7. Modeling the Spread of a Disease. In a simple model for a disease that
is spread through infections transmitted between individuals in a population,
the population is divided into three compartments pictured in Figure 18. In
the first compartment, S(t) denotes the number of individuals in a population
that are susceptible to acquiring the disease; in the second compartment, I(t)
denotes the number of infected individual who can also infect others; and, in
the third compartment, R(t) denotes the number of individuals who had the
disease and who have recovered from it; they can no longer get infected.

The arrows between compartments indicate the rates at which individuals flow
from one compartment to the other. For instance, the arrow between the first
two compartments indicates the transmission rate of the disease; it is assumed
that the rate at which susceptible individuals get infected is proportional to
product of number of susceptible individuals and the number of infected in-
dividuals with constant of proportionality β > 0. The rate at which infected
individuals recover is indicated by the arrow between the last two compart-
ments; it is assumed that this rate is proportional to the number of infected
individuals, with constant of proportionality γ > 0.

(a) What are the units for β and γ?

Answer:

β has units of
1

poppulation× time
.

γ has units of
1

time
. �

(b) Use conservation principles to derive a system of differential equations for
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the functions S, I and R, assuming that they are differentiable, of the form

dS

dt
= f(S, I, R, β, γ);

dI

dt
= g(S, I, R, β, γ);

dR

dt
= h(S, I, R, β, γ),

(20)

where f , g and h are continuous functions that have continuous partial
derivatives with respect to S, I and R. The system in (20) is known in
the literature as the Kermack–McKendrick SIR model. It first appeared
in the scientific literature in 1927.

Solution: Use the conservation principle

dS

dt
= Rate of S in− Rate of S out,

where, according to the flow diagram in Figure 18,

Rate of S in = 0

and
Rate of S out = βSI;

so that
dS

dt
= −βSI.

Similarly, we obtain
dI

dt
= βSI − γI,

and
dR

dt
= γI.

We therefore obtain the three–dimensional system

dS

dt
= −βSI;

dI

dt
= βSI − γI;

dR

dt
= γI.

(21)

�
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(c) Deduce that the system in (20) implies that the total number of individuals
in the population,

N(t) = S(t) + I(t) +R(t), (22)

remains constant. Denote N(t) by N , where N is a constant, for all t.

Solution: Differentiate with respect to t on both sides of (22) to obtain
that

dN

dt
=

dS

dt
+

dI

dt
+

dR

dt
;

so that, adding up the expressions on the right–hand side of (21),

dN

dt
= 0, for all t.

It then follows that N(t) is constant. Set

N(t) = N, for all t, (23)

where N is a constant. �
(d) Explain why the result of part (c) implies that the study of the system

(20) reduces to the study of the two–dimensional system
dS

dt
= f(S, I, R, β, γ);

dI

dt
= g(S, I, R, β, γ).

(24)

Solution: Combining (22) and (23) we get

S(t) + I(t) +R(t) = N, for all t,

from which we get that

R(t) = N − S(t)− I(t), for all t. (25)

It follows from (25) that, if S(t) and I(t) are known, then we can determine
R(t). Thus, it suffices to consider the two–dimensional system

dS

dt
= −βSI;

dI

dt
= βSI − γI.

(26)

�
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(e) Introduce dimensionless variables

x =
S

N
, y =

I

N
, and τ =

t

λ
, (27)

for some scaling factor, λ, in units of time, in order to write the system
(24) in dimensionless form.

Solution: Using the dimensionless variables given in (27), we nondimen-
sionalize the system in (26).

Use the Chain Rule to compute

dx

dτ
=

dx

dt
· dt
dτ

,

where, according to the right–most expression in (27),

dt

dτ
= λ.

Thus, using the left–most expression in (27),

dx

dτ
=

λ

N

dS

dt
.

Hence, substituting the first equation in (26),

dx

dτ
= −λβNxy, (28)

where we have also used the middle expression in (27).

Similar calculations to those leading to (28) can be used to derive the
equation

dy

dτ
= λβNxy − λγy. (29)

Combining (28) and (29) yields the system
dx

dτ
= −λβNxy;

dy

dτ
= λβNxy − λγy.

(30)

Observe that, in view of the answers to part (a) of this problem, the
groupings of parameters λβN and λγ are dimensionless. We will set

λγ = 1;
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so that

λ =
1

γ
,

and
α = λβN ;

so that

α =
βN

γ
. (31)

With this choices of parameters we can rewrite the system in (30) as
dx

dτ
= −αxy;

dy

dτ
= αxy − y.

(32)

�
(f) Analyze the system obtained in part (e). What does the model in (20)

predict about the spread of the disease in terms of the initial conditions
S(0) = So, I(0) = Io, R(0) = 0, and the parameters β, γ and N? Un-
der which conditions will the number of infected individuals increase (an
epidemic outbreak), or decrease?

Solution: The ẋ = 0–nullclines of the system in (32) are

x = 0 (the y–axis) and y = 0 (the x–axis).

The ẏ = 0–nullclines are the lines

y = 0 (the x–axis) and x =
1

α
.

These are sketched in Figure 19 for the case α = 1. � Thus, all the
points in the points on the x–axis are equilibrium points of the system in
(32). Hence, the system (32) has no isolated equilibrium points; therefore,
the principle of linearized stability does not apply to the system (32).

Figure 19 also shows a few trajectories of the system in (32) obtained
using the Java version of pplane. Note that, if the initial proportion of
susceptible individuals,

xo =
So

N
,
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Figure 19: Sketch of Nullclines of the System in (32)

is bigger than
1

α
, then the proportion of infected individuals,

I

N
, will

increase. Thus, an epidemic outbreak will occur if

So

N
>

1

α
,

or, in view of (31),
So

N
>

γ

βN
,

or
So >

γ

β
. (33)

On the other hand, if

So 6
γ

β
,

the number of infected individuals will decrease to 0 in finite time. Hence,
there will be not epidemic outbreak in this case.

Notice that the conclusion reached above is independent of the initial
number of infected individuals, Io. Thus, we can take Io = 1; so that,
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So = N − 1, in the case in which R(0) = 0. Thus, according to (33), there
will be an epidemic outbreak if

N − 1 >
γ

β
,

or
β(N − 1)

γ
> 1.

On the other hand, there will not be an outbreak if

β(N − 1)

γ
6 1.


