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Solutions to Assignment #14

1. Let A be the 2 x 2 matrix and suppose that v is a nonzero vector in R? such
that
Av = \v, (1)

for some scalar .

Define the path (5) :R = R? by
(x(t%) = ceMy, for all t € R, (2)

where c is scalar constant. Verify that (5) is a solution of the system of first

0)-+()

where the dot above the variable name indicates derivative with respect to .

order differential equations

Suggestion: Differentiate on both sides of (2) with respect to ¢ and use (1).
Notation. The function in (2) is called a line solution of the system in (3).

Solution: Take the derivative with respect to t on both sides of the equation
in (2) to get
) _ 4 n
(y(t)) = 5 (ce v)

= cheMv

= ceM(\Wv);

(4) - o

Consequently, using the properties of matrix multiplication,

(56) - 2

so that, in view of (1),
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Thus, in view of the definition of z(t) in (2),
y(t)

t a:t
() = A (%), oriew

which shows that the function ( ) defined in (2) solves the system of first—

order differential equations given in (3). 0

2. Let A denote the 2 x 2 matrix
01
=(1 ),
1
and let v; = (_1) and vy = ( )

Verify that Avy = A\1vy, where \;

= (10) (1)

—1; and Avy = Agvy, where Ay = 1.

Solution: Compute

which shows that Av; = A\jvy, where \; = —
0 1 1
= (10) (1)
_ 1
= (1)

which shows that Avy = Ayvy, where Ay = 1. O

Similarly,
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3. Consider the system

(a)

dv
a_yu
(4)
dy
a—ﬂf

Show that the system in (4) can be written in vector form as in (3) where
A is the matrix given in Problem 2.

Solution: Write the system (4) in vector form

()= ()

which can be written in terms of matrix multiplication as

x 0 1\ [z
-0
Thus, according to (5), the system in (4) is of the form as (3), where A is

the matrix given in Problem 3. U

Let vq and vy be the vectors given in Problem 3, Ay = —1 and Ay = 1. Use
the result in Problem 1 to show that

(ZEQ) =My, and @zgg) —eMly,,  forallteR, (6)

define solutions of the system in (4).

Solution: Apply the result of Problem 1 to each of the vector—valued
functions defined in (6) to get that

(ﬁi@) =4 (ZEQ) and (ZEED =A (ZEQ) forallt € R, (7)

which shows that the functions defined in (6) solve the system in (4). O

4. Let (xl) and (?) be the paths defined in Problem 3.
2

U1

Verify that the function (;) : R — R? defined by

(28) — ¢ (?8) + o (gsgg) . forallteR, (8)
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solves the system in (4).

Solution: Take the derivative with respect to ¢t on both sides of the expression
in (8) to compute

@ (t) jzl(t)) (:@(t))
: = . . for t € R;
(W)) “ <yl ) "2 \)) TN
so that, using (7),
j:(t)) <:U1(t)) <:U2(t))
) = A + A , forteR,
(yof) ) T2 () '
thus, applying the distributive property of matrix multiplication,
i(t) xl(t)> (932(15))>
. = A , forteR. 9
() = 4= () += () = )
Comparing (9) and (8), we see that
50(?5)) (x(t))
) =A , forteR,
(y@) y(t) '
which shows that the function (z) : R — R? defined in (8) solves the system
in (4). O

5. Use the function given in (8) to sketch the flow of the vector field

F (ﬂyf) = <i) . forall @”) € R (10)

Solution: Since the vector field in (10) is given by

F (5) —A (;) . for all (‘;”) c R, (11)

where A is the 2 X 2 matrix
0 1
()

It then follows from the results in Problem 2, Problem 3 and Problem 4, that
the general solution of the system

()-40)
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is given by
(:c(?) = 1My + ey, for all £ € R (13)

y(t
v = <_D and vy — G) , (14)

and the scalars \; and Ay are given by

where

A=—=1 and X =1.

We can then rewrite (13) as

(;Ei;) = cre vy + cpefvy,  forall t € R, (15)

where the vectors v; and vy are given in (14).

We can use the expression in (15) for the solutions of the system in (12) to
sketch the flow of the vector field F': R? — R? given in (10).

By taking ¢; = ¢ = 0 in (15), we obtain

(Z%) - (8) , forallteR.

This is the equilibrium solution at the origin sketched as a dot in Figure 1.

The case ¢; = 0 and ¢y # 0 yields the solutions

<§Eg) = cpelvy, forallt € R, (16)
where ¢y # 0.
The equation in (16) is the vector—parametric equation of a half-line emanating
from the origin in the direction of the vector vo = 1 , in the case ¢y > 0,

since e! > 0 for all ¢ € R. For the case ¢ < 0, the half-line parametrized by (16)
is in the direction opposite to that of vo. Both trajectories parametrized by (16)
point away from the origin since e’ increases as t increases. The directions along
these trajectories are indicated by arrows on the half-lines shown in Figure 1.

For the case ¢; # 0 and ¢ = 0, we obtain from (15) the vector—parametric

equation
() -er.
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Figure 1: Sketch of Flow of Vector Field

where ¢ # 0.

1
1)
for the case ¢; > 0, and in the opposite direction in the case ¢; < 0. Both
trajectories tend towards the origin because e~! decreases to 0 as t increases.
These are sketched in Figure 1.

The equation in (17) parametrizes half-lines in the direction of v; =

To sketch the trajectories parametrized by (15) for the case ¢; # 0 and ¢y # 0,
use the directions prescribed by the signs of & and gy given by the differential
equations in the system in (4). These directions are shown in the sketch in
Figure 1. U



