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Solutions to Assignment #14

1. Let A be the 2 × 2 matrix and suppose that v is a nonzero vector in R2 such
that

Av = λv, (1)

for some scalar λ.

Define the path

(
x
y

)
: R→ R2 by

(
x(t)
y(t)

)
= ceλtv, for all t ∈ R, (2)

where c is scalar constant. Verify that

(
x
y

)
is a solution of the system of first

order differential equations (
ẋ
ẏ

)
= A

(
x
y

)
, (3)

where the dot above the variable name indicates derivative with respect to t.

Suggestion: Differentiate on both sides of (2) with respect to t and use (1).

Notation. The function in (2) is called a line solution of the system in (3).

Solution: Take the derivative with respect to t on both sides of the equation
in (2) to get (

ẋ(t)
ẏ(t)

)
=

d

dt

(
ceλtv

)
= cλeλtv

= ceλt(λv);

so that, in view of (1), (
ẋ(t)
ẏ(t)

)
= ceλtAv.

Consequently, using the properties of matrix multiplication,(
ẋ(t)
ẏ(t)

)
= A

(
ceλtv

)
.
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Thus, in view of the definition of

(
x(t)
y(t)

)
in (2),

(
ẋ(t)
ẏ(t)

)
= A

(
x(t)
y(t)

)
, for t ∈ R,

which shows that the function

(
x(t)
y(t)

)
defined in (2) solves the system of first–

order differential equations given in (3). �

2. Let A denote the 2× 2 matrix

A =

(
0 1
1 0

)
,

and let v1 =

(
1
−1

)
and v2 =

(
1
1

)
Verify that Av1 = λ1v1, where λ1 = −1; and Av2 = λ2v2, where λ2 = 1.

Solution: Compute

Av1 =

(
0 1
1 0

)(
1
−1

)

=

(
−1

1

)

= −
(

1
−1

)
,

which shows that Av1 = λ1v1, where λ1 = −1.

Similarly,

Av2 =

(
0 1
1 0

)(
1
1

)

=

(
1
1

)
,

which shows that Av2 = λ2v2, where λ2 = 1. �
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3. Consider the system 
dx

dt
= y;

dy

dt
= x.

(4)

(a) Show that the system in (4) can be written in vector form as in (3) where
A is the matrix given in Problem 2.

Solution: Write the system (4) in vector form(
ẋ
ẏ

)
=

(
y
x

)
,

which can be written in terms of matrix multiplication as(
ẋ
ẏ

)
=

(
0 1
1 0

)(
x
y

)
. (5)

Thus, according to (5), the system in (4) is of the form as (3), where A is
the matrix given in Problem 3. �

(b) Let v1 and v2 be the vectors given in Problem 3, λ1 = −1 and λ2 = 1. Use
the result in Problem 1 to show that(

x1(t)
y1(t)

)
= eλ1tv1 and

(
x2(t)
y2(t)

)
= eλ2tv2, for all t ∈ R, (6)

define solutions of the system in (4).

Solution: Apply the result of Problem 1 to each of the vector–valued
functions defined in (6) to get that(

ẋ1(t)
ẏ1(t)

)
= A

(
x1(t)
y1(t)

)
and

(
ẋ2(t)
ẏ2(t)

)
= A

(
x2(t)
y2(t)

)
, for all t ∈ R, (7)

which shows that the functions defined in (6) solve the system in (4). �

4. Let

(
x1
y1

)
and

(
x2
y2

)
be the paths defined in Problem 3.

Verify that the function

(
x
y

)
: R→ R2 defined by(

x(t)
y(t)

)
= c1

(
x1(t)
y1(t)

)
+ c2

(
x2(t)
y2(t)

)
, for all t ∈ R, (8)
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solves the system in (4).

Solution: Take the derivative with respect to t on both sides of the expression
in (8) to compute(

ẋ(t)
ẏ(t)

)
= c1

(
ẋ1(t)
ẏ1(t)

)
+ c2

(
ẋ2(t)
ẏ2(t)

)
, for t ∈ R;

so that, using (7),(
ẋ(t)
ẏ(t)

)
= c1A

(
x1(t)
y1(t)

)
+ c2A

(
x2(t)
y2(t)

)
, for t ∈ R;

thus, applying the distributive property of matrix multiplication,(
ẋ(t)
ẏ(t)

)
= A

(
c1

(
x1(t)
y1(t)

)
+ c2

(
x2(t)
y2(t)

))
, for t ∈ R. (9)

Comparing (9) and (8), we see that(
ẋ(t)
ẏ(t)

)
= A

(
x(t)
y(t)

)
, for t ∈ R,

which shows that the function

(
x
y

)
: R→ R2 defined in (8) solves the system

in (4). �

5. Use the function given in (8) to sketch the flow of the vector field

F

(
x
y

)
=

(
y
x

)
, for all

(
x
y

)
∈ R2. (10)

Solution: Since the vector field in (10) is given by

F

(
x
y

)
= A

(
x
y

)
, for all

(
x
y

)
∈ R2, (11)

where A is the 2× 2 matrix

A =

(
0 1
1 0

)
.

It then follows from the results in Problem 2, Problem 3 and Problem 4, that
the general solution of the system(

ẋ
ẏ

)
= A

(
x
y

)
, (12)
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is given by (
x(t)
y(t)

)
= c1e

λ1tv1 + c2e
λ2tv2, for all t ∈ R. (13)

where

v1 =

(
1
−1

)
and v2 =

(
1
1

)
, (14)

and the scalars λ1 and λ2 are given by

λ1 = −1 and λ2 = 1.

We can then rewrite (13) as(
x(t)
y(t)

)
= c1e

−tv1 + c2e
tv2, for all t ∈ R, (15)

where the vectors v1 and v2 are given in (14).

We can use the expression in (15) for the solutions of the system in (12) to
sketch the flow of the vector field F : R2 → R2 given in (10).

By taking c1 = c2 = 0 in (15), we obtain(
x(t)
y(t)

)
=

(
0
0

)
, for all t ∈ R.

This is the equilibrium solution at the origin sketched as a dot in Figure 1.

The case c1 = 0 and c2 6= 0 yields the solutions(
x(t)
y(t)

)
= c2e

tv2, for all t ∈ R, (16)

where c2 6= 0.

The equation in (16) is the vector–parametric equation of a half–line emanating

from the origin in the direction of the vector v2 =

(
1
1

)
, in the case c2 > 0,

since et > 0 for all t ∈ R. For the case c2 < 0, the half–line parametrized by (16)
is in the direction opposite to that of v2. Both trajectories parametrized by (16)
point away from the origin since et increases as t increases. The directions along
these trajectories are indicated by arrows on the half–lines shown in Figure 1.

For the case c1 6= 0 and c2 = 0, we obtain from (15) the vector–parametric
equation (

x(t)
y(t)

)
= c1e

−tv1, (17)



Math 32S. Rumbos Spring 2019 6

x

y
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Figure 1: Sketch of Flow of Vector Field

where c1 6= 0.

The equation in (17) parametrizes half–lines in the direction of v1 =

(
1
−1

)
,

for the case c1 > 0, and in the opposite direction in the case c1 < 0. Both
trajectories tend towards the origin because e−t decreases to 0 as t increases.
These are sketched in Figure 1.

To sketch the trajectories parametrized by (15) for the case c1 6= 0 and c2 6= 0,
use the directions prescribed by the signs of ẋ and ẏ given by the differential
equations in the system in (4). These directions are shown in the sketch in
Figure 1. �


