Solutions to Review Problems for Exam 2

1. Compute and sketch the flow of the vector field

$$F(x,y) = -2x\hat{i} + y\hat{j}$$
, for $(x,y) \in \mathbb{R}^2$.

Solution: First, we compute solutions of the system of differential equations

$$\begin{cases} \dot{x} = -2x; \\ \dot{y} = y. \end{cases} \tag{1}$$

The solution curves of the system in (1) are given parametrically by

$$\begin{cases} x(t) = c_1 2^{-2t}; \\ y(t) = c_2 e^t, \end{cases} \quad \text{for } t \in \mathbb{R},$$
 (2)

and for constants of integration c_1 and c_2 .

We sketch the various types of curves prametrized by the equations in (2) by considering all possibilities for c_1 and c_2 .

If $c_1 = 0$ and $c_2 = 0$ in (2), we obtain the equilibrium solution (0,0); this is sketched as a dot in Figure 1.

If $c_1 \neq 0$ and $c_2 = 0$ in (2), we obtain the parametric equations

$$\begin{cases} x(t) = c_1 2^{-2t}; \\ y(t) = 0, \end{cases}$$
 for $t \in \mathbb{R}$,

which are the parametric equations of half-lines along the x-axis: the positive x-axis for $c_1 > 0$, and the negative x-axis for $c_1 < 0$. These trajectories tend towards the origin (0,0) because e^{-2t} decreases to 0 as t increases. These trajectories are sketched in Figure 1.

If $c_1 = 0$ and $c_2 \neq 0$ in (2), we obtain the parametric equations

$$\begin{cases} x(t) = 0; \\ y(t) = c_2 e^t, \end{cases} \text{ for } t \in \mathbb{R},$$

which are the parametric equations of half-lines along the y-axis: the positive y-axis for $c_2 > 0$, and the negative y-axis for $c_2 < 0$. These trajectories tend away from origin (0,0) because e^t increases as t increases. These trajectories are sketched in Figure 1.

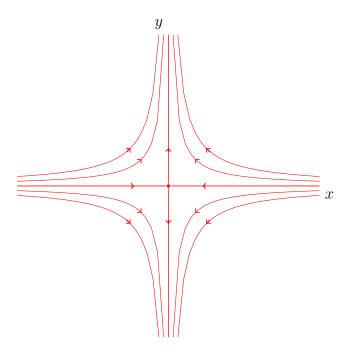


Figure 1: Sketch of Phase Portrait of System (1)

Finally, assume that $c_1 \neq 0$ and $c_2 \neq 0$. From the equations in (2) we obtain

$$\begin{cases} x = c_1 2^{-2t}; \\ y^2 = c_2^2 e^{2t}, \end{cases} \quad \text{for } t \in \mathbb{R}.$$
 (3)

Multiplying the equations in (3) to each other then yields the equation

$$xy^2 = c_1 c_2^2,$$

or

$$xy^2 = c, (4)$$

where we have set $c = c_1 c_2^2$; so that, $c \neq 0$.

The trajectories given by the equation in (4) lie on each of the four quadrants off the coordinate axis. For instance, for the case c > 0, we can solve (4) for y to obtain

$$y = \pm \frac{\sqrt{c}}{\sqrt{x}}$$
, for $x > 0$.

These yield trajectories in the first and fourth quadrant in Figure 1. The trajectories in the second and third quadrant correspond to the case c < 0.

The directions along the trajectories given by (4) for $c \neq 0$ are dictated by the signs of \dot{x} and \dot{y} in each of the quadrants. These directions are shown by arrows of the curves shown in Figure 1.

2. Compute and sketch the flow of the vector field

$$F(x,y) = -2x\hat{i} - 2y\hat{j}, \quad \text{for } (x,y) \in \mathbb{R}^2.$$

Solution: First, we compute solutions of the system of differential equations

$$\begin{cases} \dot{x} = -2x; \\ \dot{y} = -2y. \end{cases}$$
 (5)

The solution curves of the system in (5) are given parametrically by

$$\begin{cases} x(t) = c_1 2^{-2t}; \\ y(t) = c_2 e^{-2t}, \end{cases} \quad \text{for } t \in \mathbb{R},$$
 (6)

and for constants of integration c_1 and c_2 .

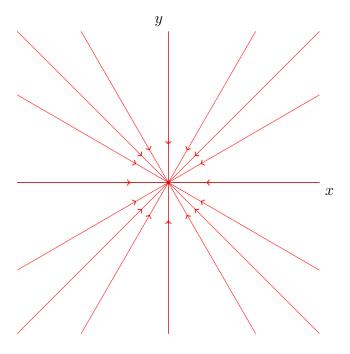


Figure 2: Sketch of Phase Portrait of System (5)

The case $c_1 = c_2 = 0$ in (6) corresponds to the equilibrium point (0,0), which is sketched as dot in Figure 2.

The case $c_1 \neq 0$ and $c_2 = 0$ in (6) corresponds to two trajectories along the x-axis: one on the positive x-axis for c_1 .0, and the other on the negative x-axis for $c_1 < 0$. Since e^{-2t} decreases to 0 as t increases, these two trajectories point toward the origin. These are shown in Figure 2.

The case $c_1 = 0$ and $c_2 \neq 0$ in (6) corresponds to two trajectories along the y-axis: one on the positive y-axis ($c_2 > 0$) tending towards the origin since e^{-2t} decreases to 0 as t increases, and the other on the negative y-axis ($c_2 < 0$) also tending towards the origin. These two trajectories are sketched in Figure 2.

Finally, in the case $c_1 \neq 0$ and $c_2 \neq 0$ in (6), divide the first equation in (6) into the second equation to get

 $\frac{y}{x} = \frac{c_2}{c_1},$

or

$$\frac{y}{x} = c,$$

where we have set $c = \frac{c_2}{c_1}$; so that,

$$y = cx, (7)$$

where $c \neq 0$. Thus, the rest of the trajectories of the system in (5) lie along straight lines through the origin of non–zero slope. These trajectories all tend towards the origin since $e^{-2t} \to 0$ as $t \to \infty$. A few of those trajectories are shown in Figure 2.

3. A particle of unit mass is moving along a path in the xy-plane parametrized by $\sigma(t) = R \sin(\omega t)\hat{i} + R \cos(\omega t)\hat{j}$, for $t \in \mathbb{R}$, where R is measured in meters, t is measured in seconds, and ω in radians per second.

The particle flies of its path on a tangent line at time t_o such that $\omega t_o = \frac{\pi}{3}$ radians.

(a) Give the position and velocity of the particle at time t_o .

Solution: At time t_o the particle flies of its original path along a straight line parametrized by

$$\ell(t) = \sigma(t_o) + (t - t_o)\sigma'(t_o), \quad \text{for } t \geqslant t_o,$$
(8)

where

$$\sigma(t) = R\sin(\omega t)\hat{i} + R\cos(\omega t)\hat{j}, \quad \text{for } t \in \mathbb{R},$$
(9)

and

$$\sigma'(t) = R\omega \cos(\omega t)\hat{i} - R\omega \sin(\omega t)\hat{j}, \quad \text{for } t \in \mathbb{R}.$$
 (10)

The position of the particle at time t_o is obtained by substituting $\omega t_o = \frac{\pi}{3}$ in (9) to get

$$\sigma(t_o) = R \frac{\sqrt{3}}{2} \hat{i} + \frac{R}{2} \hat{j}. \tag{11}$$

The velocity of the particle at time t_o is obtained by substituting $\omega t_o = \frac{\pi}{3}$ in (10) to get

$$\sigma'(t_o) = \frac{R\omega}{2}\hat{i} - \frac{R\omega\sqrt{3}}{2}\hat{j}.$$
 (12)

(b) Give the equation of the path of the particle after it flies off its circular path.

Solution: Substitute the vectors in (11) and (12) into the expression for the tangent line to the path σ at t_o given in (8) to get

$$\ell(t) = R \frac{\sqrt{3}}{2} \hat{i} + \frac{R}{2} \hat{j} + (t - t_o) \left(\frac{R\omega}{2} \hat{i} - \frac{R\omega\sqrt{3}}{2} \hat{j} \right), \quad \text{for } t \geqslant t_o,$$

or

$$\ell(t) = \left(R\frac{\sqrt{3}}{2} + (t - t_o)\frac{R\omega}{2}\right)\hat{i} + \left(\frac{R}{2} - (t - t_o)\frac{R\omega\sqrt{3}}{2}\right)\hat{j},\tag{13}$$

for
$$t \geqslant t_o$$
.

(c) Find the time $t > t_o$, if any, at which the particle meets the x-axis. Give the location of the particle at that time.

Solution: The tangent line in (13) will meet the x-axis when the second component in (13 is 0, or

$$\frac{R}{2} - (t - t_o) \frac{R\omega\sqrt{3}}{2} = 0,$$

or

$$1 - (t - t_o)\omega\sqrt{3} = 0. \tag{14}$$

Solving (14) for t then yields

$$t = t_o + \frac{\sqrt{3}}{3\omega}.$$

4. A particle moving in a straight line (along the x-axis) is moving according to the law of motion

$$\ddot{x} = 8x - 2\dot{x}.\tag{15}$$

Define

$$x(t) = e^{\lambda t}, \quad \text{for } t \in \mathbb{R}.$$
 (16)

(a) Determine distinct values of λ for which the function x defined in (16) solves the differential equation in (15).

Solution: Differentiate the function x in (16) with respect to t twice to get

$$\dot{x}(t) = \lambda e^{\lambda t}, \quad \text{for } t \in \mathbb{R},$$
 (17)

and

$$\ddot{x}(t) = \lambda^2 e^{\lambda t}, \quad \text{for } t \in \mathbb{R},$$
 (18)

where we have used the Chain Rule.

Substituting the expressions for x, \dot{x} and \ddot{x} in (16), (17) and (18), respectively, into the differential equation in (15) yields

$$\lambda^2 e^{\lambda t} = 8e^{\lambda t} - 2\lambda e^{\lambda t}, \quad \text{for } t \in \mathbb{R},$$

from which we get

$$\lambda^2 = 8 - 2\lambda,$$

since the exponential function is never 0; from which we get the secondorder equation

$$\lambda^2 + 2\lambda - 8 = 0. \tag{19}$$

The left-hand side of (19) can be factored to yield

$$(\lambda + 4)(\lambda - 2) = 0,$$

from which we get that

$$\lambda_1 = -4 \quad \text{and} \quad \lambda_2 = 2. \tag{20}$$

(b) Let λ_1 and λ_2 denote the two distinct values of λ obtained in part (a). Verify that the function $u: \mathbb{R} \to \mathbb{R}^2$ given by

$$u(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}, \quad \text{for } t \in \mathbb{R}, \tag{21}$$

where c_1 and c_2 are constants, solves the differential equation in (15).

Solution: With the values of λ_1 and λ_2 given in (20), we obtain from (21) that

$$u(t) = c_1 e^{-4t} + c_2 e^{2t}, \quad \text{for } t \in \mathbb{R},$$
 (22)

where c_1 and c_2 are constants.

Differentiating the function u in (22) with respect to t twice then yields

$$\dot{u}(t) = -4c_1e^{-4t} + 2c_2e^{2t}, \quad \text{for } t \in \mathbb{R},$$
 (23)

and

$$\ddot{u}(t) = 16c_1e^{-4t} + 4c_2e^{2t}, \quad \text{for } t \in \mathbb{R}.$$
 (24)

Next, compute

$$8u(t) - 2\dot{u}(t) = 8(c_1e^{-4t} + c_2e^{2t}) - 2(-4c_1e^{-4t} + 2c_2e^{2t})$$
$$= 8c_1e^{-4t} + 8c_2e^{2t} + 8c_1e^{-4t} - 4c_2e^{2t},$$

from which we get that

$$8u(t) - 2\dot{u}(t) = 16c_1e^{-4t} + 4c_2e^{2t}, \quad \text{for } t \in \mathbb{R}.$$
 (25)

Comparing (24) and (25), we see that

$$\ddot{u}(t) = 8u(t) - 2\dot{u}(t), \quad \text{for } t \in \mathbb{R},$$

which shows that the function u in (22) solves the differential equation in (15).

5. We showed in class that the square of the area of the parallelogram, $\mathcal{P}(u, v)$, determined by vectors u and v in \mathbb{R}^2 satisfies the equation

$$(\operatorname{area}(\mathcal{P}(u,v)))^2 = ||u||^2 ||v||^2 - (v \cdot u)^2.$$
(26)

(a) Use the expression in (26) and properties of the dot product to derive the expression

$$\operatorname{area}(\mathcal{P}(u,v))) = ||u|| ||v|| |\sin \theta|, \tag{27}$$

where θ is the angle between u and v.

Solution: Use the fact that $v \cdot u = ||v|| ||u|| \cos \theta$ to get from (26) that

$$(\operatorname{area}(\mathcal{P}(u,v)))^{2} = ||u||^{2}||v||^{2} - (||v|||u||\cos\theta)^{2}$$
$$= ||u||^{2}||v||^{2} - ||v||^{2}||u||^{2}\cos^{2}\theta$$
$$= ||u||^{2}||v||^{2}(1-\cos^{2}\theta),$$

from which we get that

$$(\operatorname{area}(\mathcal{P}(u,v)))^2 = ||u||^2 ||v||^2 \sin^2 \theta.$$
 (28)

Taking the positive square root on both sides of (28 yields (27)).

(b) Give a geometric explanation of the expression in (27).

Solution: Refer to Figure 3.

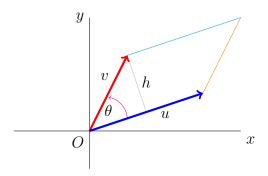


Figure 3: Parallelogram determined by u and v

The sketch in Figure 3 shows vectors u and v in standard position in the first quadrant. The sketch also shows the parallelogram, $\mathcal{P}(u,v)$, determined by u and v. The sketch also shows that angle, θ , between and b, and the height, h, of the parallelogram (the distance from v to the line through O in the direction of u.

The area of the parallelogram in Figure 3 is given by

$$\operatorname{area}(\mathcal{P}(u,v))) = ||u||h, \tag{29}$$

the are of the base times the height.

The line determining the height is perpendicular to the line through O in the direction of u. Hence v is the hypotenuse of a right triangle determined by height line, u and v. Hence, by the definition of the sine function,

$$\sin \theta = \frac{h}{\|v\|},$$

from which we get

$$h = ||v|| \sin \theta. \tag{30}$$

Substituting the expression for h in (30) into (29) yields (27).

(c) When is the area of the parallelogram determined by u and v the largest possible?

Solution: It follows from (27) that $\operatorname{area}(\mathcal{P}(u,v))$) is the largest when $|\sin \theta| = 1$. This occurs when θ is a right angle. Hence, the parallelogram must be a rectangle for its area to be the largest possible.

- 6. Let A and Q denote the 2×2 matrices $A = \begin{pmatrix} 0 & 1 \\ 8 & -2 \end{pmatrix}$ and $Q = \begin{pmatrix} 1 & 1 \\ -4 & 2 \end{pmatrix}$
 - (a) Show that Q is invertible, and compute its inverse, Q^{-1} .

Solution: Compute $\det(Q) = 6 \neq 0$. Consequently, Q is invertible and its inverse is given by

$$Q^{-1} = \frac{1}{6} \begin{pmatrix} 2 & -1 \\ 4 & 1 \end{pmatrix}. \tag{31}$$

(b) Compute $Q^{-1}AQ$. Explain why $Q^{-1}AQ$ is called a diagonal matrix.

Solution: Use the associative property of matrix multiplication to compute

$$Q^{-1}AQ = \frac{1}{6} \begin{pmatrix} 2 & -1 \\ 4 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 8 & -2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -4 & 2 \end{pmatrix}$$
$$= \frac{1}{6} \begin{pmatrix} 2 & -1 \\ 4 & 1 \end{pmatrix} \begin{pmatrix} -4 & 2 \\ 16 & 4 \end{pmatrix}$$
$$= \frac{1}{6} \begin{pmatrix} -24 & 0 \\ 0 & 12 \end{pmatrix};$$

so that,

$$Q^{-1}AQ = \begin{pmatrix} -4 & 0 \\ 0 & 2 \end{pmatrix}.$$

This matrix is diagonal because the nonzero entries are along the main diagonal of the matrix. $\hfill\Box$

- 7. The matrix $D = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, where λ_1 and λ_2 are real numbers, is called a **diagonal** matrix.
 - (a) Compute D^2 , D^3 and D^n , for any positive integer n.

Solution: Compute

$$D^{2} = DD$$

$$= \begin{pmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{pmatrix} \begin{pmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{pmatrix}$$

$$= \begin{pmatrix} \lambda_{1}^{2} & 0 \\ 0 & \lambda_{2}^{2} \end{pmatrix}.$$

Next, use the associative property of matrix multiplication to compute

$$D^{3} = DD^{2}$$

$$= \begin{pmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{pmatrix} \begin{pmatrix} \lambda_{1}^{2} & 0 \\ 0 & \lambda_{2}^{2} \end{pmatrix}$$

$$= \begin{pmatrix} \lambda_{1}^{3} & 0 \\ 0 & \lambda_{2}^{3} \end{pmatrix}.$$

The calculations shown above suggest that

$$D^n = \begin{pmatrix} \lambda_1^n & 0\\ 0 & \lambda_2^n \end{pmatrix},$$

for positive integers n.

(b) Assume that $\lambda_1 \neq 0$ and $\lambda_2 \neq 0$. Show that D is invertible and compute D^{-1} .

Solution: In this case, $det(D) = \lambda_1 \lambda_2 \neq 0$; so that, D is invertible and

$$D^{-1} = \frac{1}{\lambda_1 \lambda_2} \begin{pmatrix} \lambda_2 & 0 \\ 0 & \lambda_1 \end{pmatrix},$$

or

$$D^{-1} = \begin{pmatrix} 1/\lambda_1 & 0\\ 0 & 1/\lambda_2 \end{pmatrix},$$

or

$$D^{-1} = \begin{pmatrix} \lambda_1^{-1} & 0\\ 0 & \lambda_2^{-1} \end{pmatrix}.$$

8. Consider the linear system

$$\begin{cases} \dot{x} = -3x + 2y; \\ \dot{y} = 4x - 5y. \end{cases}$$
 (32)

Let

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ -2 \end{pmatrix} \quad \text{and} \quad \mathbf{v}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix},$$

and define the vector value function

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = c_1 e^{-7t} \mathbf{v}_1 + c_2 e^{-t} \mathbf{v}_2, \quad \text{for } t \in \mathbb{R},$$
 (33)

where c_1 and c_2 are constants.

(a) Verify that the vector-valued function given in (33) solves the system in (32).

Solution: Write the system in (33) in matrix form

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = A \begin{pmatrix} x \\ y \end{pmatrix}, \tag{34}$$

where A is the 2×2 matrix

$$A = \begin{pmatrix} -3 & 2\\ 4 & -5 \end{pmatrix}. \tag{35}$$

Observe that

$$Av_1 = \begin{pmatrix} -3 & 2 \\ 4 & -5 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \end{pmatrix} = \begin{pmatrix} -7 \\ 14 \end{pmatrix} = -7 \begin{pmatrix} 1 \\ -2 \end{pmatrix};$$

so that,

$$Av_1 = -7v_1.$$
 (36)

Similarly,

$$Av_2 = \begin{pmatrix} -3 & 2\\ 4 & -5 \end{pmatrix} \begin{pmatrix} 1\\ 1 \end{pmatrix} = \begin{pmatrix} -1\\ -1 \end{pmatrix};$$

so that,

$$A\mathbf{v}_2 = -\mathbf{v}_2. \tag{37}$$

Taking the derivative with respect to t of the vector valued function in (33), we obtain

$$\begin{pmatrix} \dot{x}(t) \\ \dot{y}(t) \end{pmatrix} = c_1(-7)e^{-7t}\mathbf{v}_1 + c_2(-1)e^{-t}\mathbf{v}_2, \quad \text{for } t \in \mathbb{R};$$

so that, using the associative property,

$$\begin{pmatrix} \dot{x}(t) \\ \dot{y}(t) \end{pmatrix} = c_1 e^{-7t} (-7v_1) + c_2 e^{-t} (-v_2), \quad \text{for } t \in \mathbb{R}.$$

Hence, in view of (36) and (37),

$$\begin{pmatrix} \dot{x}(t) \\ \dot{y}(t) \end{pmatrix} = c_1 e^{-7t} A \mathbf{v}_1 + c_2 e^{-t} A \mathbf{v}_2, \quad \text{for } t \in \mathbb{R};$$

so that, using the distributive property of matrix multiplication

$$\begin{pmatrix} \dot{x}(t) \\ \dot{y}(t) \end{pmatrix} = A(c_1 e^{-7t} \mathbf{v}_1 + c_2 e^{-t} \mathbf{v}_1, \quad \text{for } t \in \mathbb{R}.$$
 (38)

Comparing (33) and (38), we see that

$$\begin{pmatrix} \dot{x}(t) \\ \dot{y}(t) \end{pmatrix} = A \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}, \quad \text{for } t \in \mathbb{R},$$

which shows that the vector-valued function in (33) solves the equation in (34), where A is given in (35). The differential equation in (34) is equivalent to the system in (32). Therefore, the vector-valued function given in (33) solves the system in (32), which was to be shown.

- (b) Use (33) to sketch trajectories of the system in (32) for the cases
 - (i) $c_1 = 0$ and $c_2 = 0$;
 - (ii) $c_1 \neq 0 \text{ and } c_2 = 0;$

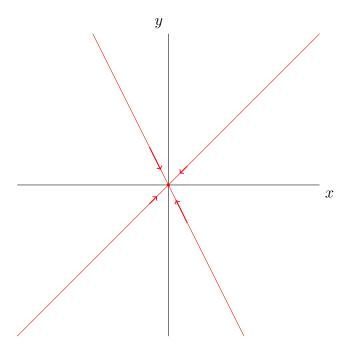


Figure 4: Sketch of solutions in (33) for cases (i), (ii) and (iii)

(iii) $c_1 = 0 \text{ and } c_2 \neq 0.$

Solution: Refer to the sketch in Figure 4.

(i) If $c_1 = c_2 = 0$ in (33),

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad \text{for } t \in \mathbb{R},$$

which corresponds to the equilibrium solution (0,0); this is sketched as a dot in Figure 4.

(ii) If $c_2 = 0$ and $c_1 \neq 0$ in (33), then

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = c_1 e^{-7t} \mathbf{v}_1, \quad \text{for } t \in \mathbb{R}.$$
 (39)

The equation in (39) is the vector–parametric equation of a half–line through the origin in the direction of v_1 if $c_1 > 0$, or a half–line through the origin through a direction opposite that of v_1 if $c_1 < 0$. Thus, there are two trajectories on the line parametrized by the equation in (39) that tend to (0,0) because e^{-7t} decreases to 0 as t increases. These trajectories are shown in the sketch in Figure 4.

(iii) If $c_1 = 0$ and $c_2 \neq 0$, (33) yields the vector-parametric equation

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = c_2 e^{-t} \mathbf{v}_2, \quad \text{for } t \in \mathbb{R}.$$
 (40)

The equation in (40) is a parametrization of two trajectories of the system in (32): a half-line through the origin in the direction of the vector \mathbf{v}_2 corresponding to the case $c_2 > 0$, and a half-line in the opposite direction corresponding to the case $c_2 < 0$. Both trajectories tend towards the origin because e^{-t} decreases to 0 as t increases.

9. Consider the Lotka-Volterra system

$$\begin{cases} \dot{x} = x - xy; \\ \dot{y} = xy - y. \end{cases} \tag{41}$$

Use the Chain Rule to derive

$$\frac{dy}{dx} = \frac{\dot{y}}{\dot{x}},\tag{42}$$

and use this expressions to obtain an equation satisfied by the trajectories of the system in (41) for x > 0 and y > 0.

Solution: Use the expression in (42) to obtain the differential equation

$$\frac{dy}{dx} = \frac{xy - y}{x - xy},$$

or

$$\frac{dy}{dx} = \frac{(x-1)y}{x(1-y)}. (43)$$

The differential equation in (43) can be separated to yield

$$\frac{1-y}{y}dy = \frac{x-1}{x}dx,$$

or

$$\left(\frac{1}{y} - 1\right) dy = \left(1 - \frac{1}{x}\right) dx. \tag{44}$$

Integrating on both sides of (44)

$$\int \left(\frac{1}{y} - 1\right) dy = \int \left(1 - \frac{1}{x}\right) dx,$$

yields

$$ln |y| - y = x - ln |x| + C,$$
(45)

where C is a constant of integration.

The expression in (45) is an equation satisfied by the trajectories of the system in (41).

10. Let a, b, c and d denote real numbers, and consider the system of linear equations

$$\begin{cases} ax + by = 0; \\ cx + dy = 0. \end{cases}$$
 (46)

(a) Explain why x = y = 0 solves the system in (46). This solution is usually referred to as the trivial solution of the system in (46).

Solution: Substituting 0 for x and 0 for y in the left-hand side of the equations in (46) yields 0 in the left-hand sides of the equations. Thus, the equations are satisfies simultaneously in this case.

(b) Show that, if $ad - bc \neq 0$, then the system in (46) has only the trivial solution.

Solution: The system in (46) can be written in matrix form

$$A\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix},\tag{47}$$

where A is the 2×2 matrix given by

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}. \tag{48}$$

Since $det(A) = ad - bc \neq 0$, the matrix A in (47) has an inverse A^{-1} . Multiply on both sides of the equation in (47) by A on the left to get

$$A^{-1}A\begin{pmatrix} x \\ y \end{pmatrix} = A^{-1}\begin{pmatrix} 0 \\ 0 \end{pmatrix};$$

so that, using the associative property of matrix multiplication,

$$(A^{-1}A)\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$

or

$$I\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix},\tag{49}$$

where I is the 2×2 identity matrix.

It follows from (49), and the calculations leading to it, that

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

is the only solution of the equation in (47), which is equivalent to the system in (46).

(c) Assume that ad - bc = 0 and $a \neq 0$. Compute all the solutions of the system in (46) in this case.

Solution: Assume that ad - bc = 0 and $a \neq 0$. Then,

$$\det\begin{pmatrix} a & c \\ b & d \end{pmatrix} = 0;$$

so that, the parallelogram determined by the vectors $(a \ b)$ and $(c \ d)$ has zero area. Consequently, the vector $(a \ b)$ lies in the same line as the vector $(c \ d)$. Therefore, $(a \ b)$ is a scalar multiple of $(c \ d)$; so that

$$\begin{pmatrix} a & b \end{pmatrix} = \lambda \begin{pmatrix} c & d \end{pmatrix}. \tag{50}$$

It follows from (50) that $\lambda \neq 0$, since we are assuming that $a \neq 0$. Multiply the second equation in (46) by λ to get

$$\begin{cases} ax + by = 0; \\ \lambda cx + \lambda dy = 0, \end{cases}$$

which, in view of (50), is equivalent to

$$\begin{cases} ax + by = 0; \\ ax + by = 0, \end{cases}$$

Hence, the system in (46) reduces to the single equation

$$ax + by = 0. (51)$$

Thus, all points on the line in (51) solve the system (46). Solving the equation in (51) for x yields

$$x = -\frac{b}{a}y\tag{52}$$

Thus, setting y = -at, where t is a parameter, we obtain the parametric equations

$$\begin{cases} x = bt; \\ y = -at. \end{cases}$$

Thus, the solutions of the system in (46) are all the scalar multiples of the vector $\begin{pmatrix} b \\ -a \end{pmatrix}$.