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Solutions to Review Problems for Exam 2

1. Compute and sketch the flow of the vector field

F (x, y) = −2xî+ yĵ, for (x, y) ∈ R2.

Solution: First, we compute solutions of the system of differential equations{
ẋ = −2x;
ẏ = y.

(1)

The solution curves of the system in (1) are given parametrically by{
x(t) = c12

−2t;
y(t) = c2e

t,
for t ∈ R, (2)

and for constants of integration c1 and c2.

We sketch the various types of curves prametrized by the equations in (2) by
considering all possibilities for c1 and c2.

If c1 = 0 and c2 = 0 in (2), we obtain the equilibrium solution (0, 0); this is
sketched as a dot in Figure 1.

If c1 6= 0 and c2 = 0 in (2), we obtain the parametric equations{
x(t) = c12

−2t;
y(t) = 0,

for t ∈ R,

which are the parametric equations of half–lines along the x–axis: the positive
x–axis for c1 > 0, and the negative x–axis for c1 < 0. These trajectories
tend towards the origin (0, 0) because e−2t decreases to 0 as t increases. These
trajectories are sketched in Figure 1.

If c1 = 0 and c2 6= 0 in (2), we obtain the parametric equations{
x(t) = 0;
y(t) = c2e

t,
for t ∈ R,

which are the parametric equations of half–lines along the y–axis: the positive
y–axis for c2 > 0, and the negative y–axis for c2 < 0. These trajectories tend
away from origin (0, 0) because et increases as t increases. These trajectories
are sketched in Figure 1.
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Figure 1: Sketch of Phase Portrait of System (1)

Finally, assume that c1 6= 0 and c2 6= 0. From the equations in (2) we obtain{
x = c12

−2t;
y2 = c22e

2t,
for t ∈ R. (3)

Multiplying the equations in (3) to each other then yields the equation

xy2 = c1c
2
2,

or
xy2 = c, (4)

where we have set c = c1c
2
2; so that, c 6= 0.

The trajectories given by the equation in (4) lie on each of the four quadrants
off the coordinate axis. For instance, for the case c > 0, we can solve (4) for y
to obtain

y = ±
√
c√
x
, for x > 0.

These yield trajectories in the first and fourth quadrant in Figure 1. The tra-
jectories in the second and third quadrant correspond to the case c < 0.
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The directions along the trajectories given by (4) for c 6= 0 are dictated by the
signs of ẋ and ẏ in each of the quadrants. These directions are shown by arrows
of the curves shown in Figure 1. �

2. Compute and sketch the flow of the vector field

F (x, y) = −2xî− 2yĵ, for (x, y) ∈ R2.

Solution: First, we compute solutions of the system of differential equations{
ẋ = −2x;
ẏ = −2y.

(5)

The solution curves of the system in (5) are given parametrically by{
x(t) = c12

−2t;
y(t) = c2e

−2t,
for t ∈ R, (6)

and for constants of integration c1 and c2.

x

y

Figure 2: Sketch of Phase Portrait of System (5)
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The case c1 = c2 = 0 in (6) corresponds to the equilibrium point (0, 0), which
is sketched as dot in Figure 2.

The case c1 6= 0 and c2 = 0 in (6) corresponds to two trajectories along the
x–axis: one on the positive x–axis for c1.0, and the other on the negative x–axis
for c1 < 0. Since e−2t decreases to 0 as t increases, these two trajectories point
toward the origin. These are shown in Figure 2.

The case c1 = 0 and c2 6= 0 in (6) corresponds to two trajectories along the
y–axis: one on the positive y–axis (c2 > 0) tending towards the origin since e−2t

decreases to 0 as t increases, and the other on the negative y–axis (c2 < 0) also
tending towards the origin. These two trajectories are sketched in Figure 2.

Finally, in the case c1 6= 0 and c2 6= 0 in (6), divide the first equation in (6) into
the second equation to get

y

x
=
c2
c1
,

or
y

x
= c,

where we have set c =
c2
c1

; so that,

y = cx, (7)

where c 6= 0. Thus, the rest of the trajectories of the system in (5) lie along
straight lines through the origin of non–zero slope. These trajectories all tend
towards the origin since e−2t → 0 as t → ∞. A few of those trajectories are
shown in Figure 2. �

3. A particle of unit mass is moving along a path in the xy–plane parametrized
by σ(t) = R sin(ωt)̂i + R cos(ωt)ĵ, for t ∈ R, where R is measured in meters, t
is measured in seconds, and ω in radians per second.

The particle flies of its path on a tangent line at time to such that ωto =
π

3
radians.

(a) Give the position and velocity of the particle at time to.

Solution: At time to the particle flies of its original path along a straight
line parametrized by

`(t) = σ(to) + (t− to)σ′(to), for t > to, (8)
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where
σ(t) = R sin(ωt)̂i+R cos(ωt)ĵ, for t ∈ R, (9)

and
σ′(t) = Rω cos(ωt)̂i−Rω sin(ωt)ĵ, for t ∈ R. (10)

The position of the particle at time to is obtained by substituting ωto =
π

3
in (9) to get

σ(to) = R

√
3

2
î+

R

2
ĵ. (11)

The velocity of the particle at time to is obtained by substituting ωto =
π

3
in (10) to get

σ′(to) =
Rω

2
î− Rω

√
3

2
ĵ. (12)

�

(b) Give the equation of the path of the particle after it flies off its circular
path.

Solution: Substitute the vectors in (11) and (12) into the expression for
the tangent line to the path σ at to given in (8) to get

`(t) = R

√
3

2
î+

R

2
ĵ + (t− to)

(
Rω

2
î− Rω

√
3

2
ĵ

)
, for t > to,

or

`(t) =

(
R

√
3

2
+ (t− to)

Rω

2

)
î+

(
R

2
− (t− to)

Rω
√

3

2

)
ĵ, (13)

for t > to. �

(c) Find the time t > to, if any, at which the particle meets the x–axis. Give
the location of the particle at that time.

Solution: The tangent line in (13) will meet the x–axis when the second
component in (13 is 0, or

R

2
− (t− to)

Rω
√

3

2
= 0,

or
1− (t− to)ω

√
3 = 0. (14)
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Solving (14) for t then yields

t = to +

√
3

3ω
.

�

4. A particle moving in a straight line (along the x–axis) is moving according to
the law of motion

ẍ = 8x− 2ẋ. (15)

Define
x(t) = eλt, for t ∈ R. (16)

(a) Determine distinct values of λ for which the function x defined in (16)
solves the differential equation in (15).

Solution: Differentiate the function x in (16) with respect to t twice to
get

ẋ(t) = λeλt, for t ∈ R, (17)

and
ẍ(t) = λ2eλt, for t ∈ R, (18)

where we have used the Chain Rule.

Substituting the expressions for x, ẋ and ẍ in (16), (17) and (18), respec-
tively, into the differential equation in (15) yields

λ2eλt = 8eλt − 2λeλt, for t ∈ R,

from which we get
λ2 = 8− 2λ,

since the exponential function is never 0; from which we get the second–
order equation

λ2 + 2λ− 8 = 0. (19)

The left–hand side of (19) can be factored to yield

(λ+ 4)(λ− 2) = 0,

from which we get that

λ1 = −4 and λ2 = 2. (20)

�
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(b) Let λ1 and λ2 denote the two distinct values of λ obtained in part (a).

Verify that the function u : R→ R2 given by

u(t) = c1e
λ1t + c2e

λ2t, for t ∈ R, (21)

where c1 and c2 are constants, solves the differential equation in (15).

Solution: With the values of λ1 and λ2 given in (20), we obtain from (21)
that

u(t) = c1e
−4t + c2e

2t, for t ∈ R, (22)

where c1 and c2 are constants.

Differentiating the function u in (22) with respect to t twice then yields

u̇(t) = −4c1e
−4t + 2c2e

2t, for t ∈ R, (23)

and
ü(t) = 16c1e

−4t + 4c2e
2t, for t ∈ R. (24)

Next, compute

8u(t)− 2u̇(t) = 8(c1e
−4t + c2e

2t)− 2(−4c1e
−4t + 2c2e

2t)

= 8c1e
−4t + 8c2e

2t + 8c1e
−4t − 4c2e

2t,

from which we get that

8u(t)− 2u̇(t) = 16c1e
−4t + 4c2e

2t, for t ∈ R. (25)

Comparing (24) and (25), we see that

ü(t) = 8u(t)− 2u̇(t), for t ∈ R,

which shows that the function u in (22) solves the differential equation in
(15). �

5. We showed in class that the square of the area of the parallelogram, P(u, v),
determined by vectors u and v in R2 satisfies the equation

(area(P(u, v)))2 = ‖u‖2‖v‖2 − (v · u)2. (26)
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(a) Use the expression in (26) and properties of the dot product to derive the
expression

area(P(u, v))) = ‖u‖‖v‖| sin θ|, (27)

where θ is the angle between u and v.

Solution: Use the fact that v · u = ‖v‖‖u‖ cos θ to get from (26) that

(area(P(u, v)))2 = ‖u‖2‖v‖2 − (‖v‖‖u‖ cos θ)2

= ‖u‖2‖v‖2 − ‖v‖2‖u‖2 cos2 θ

= ‖u‖2‖v‖2(1− cos2 θ),

from which we get that

(area(P(u, v)))2 = ‖u‖2‖v‖2 sin2 θ. (28)

Taking the positive square root on both sides of (28 yields (27). �

(b) Give a geometric explanation of the expression in (27).

Solution: Refer to Figure 3.

x

y

v

u

O

θ

h

Figure 3: Parallelogram determined by u and v

The sketch in Figure 3 shows vectors u and v in standard position in the
first quadrant. The sketch also shows the parallelogram, P(u, v), deter-
mined by u and v. The sketch also shows that angle, θ, between and b,
and the height, h, of the parallelogram (the distance from v to the line
through O in the direction of u.

The area of the parallelogram in Figure 3 is given by

area(P(u, v))) = ‖u‖h, (29)
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the are of the base times the height.

The line determining the height is perpendicular to the line through O in
the direction of u. Hence v is the hypotenuse of a right triangle determined
by height line, u and v. Hence, by the definition of the sine function,

sin θ =
h

‖v‖
,

from which we get
h = ‖v‖ sin θ. (30)

Substituting the expression for h in (30) into (29) yields (27). �

(c) When is the area of the parallelogram determined by u and v the largest
possible?

Solution: It follows from (27) that area(P(u, v))) is the largest when
| sin θ| = 1. This occurs when θ is a right angle. Hence, the parallelogram
must be a rectangle for its area to be the largest possible. �

6. Let A and Q denote the 2× 2 matrices A =

(
0 1
8 −2

)
and Q =

(
1 1
−4 2

)
(a) Show that Q is invertible, and compute its inverse, Q−1.

Solution: Compute det(Q) = 6 6= 0. Consequently, Q is invertible and
its inverse is given by

Q−1 =
1

6

(
2 −1
4 1

)
. (31)

�

(b) Compute Q−1AQ. Explain why Q−1AQ is called a diagonal matrix.

Solution: Use the associative property of matrix multiplication to com-
pute

Q−1AQ =
1

6

(
2 −1
4 1

)(
0 1
8 −2

)(
1 1
−4 2

)

=
1

6

(
2 −1
4 1

)(
−4 2
16 4

)

=
1

6

(
−24 0

0 12

)
;
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so that,

Q−1AQ =

(
−4 0

0 2

)
.

This matrix is diagonal because the nonzero entries are along the main
diagonal of the matrix. �

7. The matrix D =

(
λ1 0
0 λ2

)
, where λ1 and λ2 are real numbers, is called a

diagonal matrix.

(a) Compute D2, D3 and Dn, for any positive integer n.

Solution: Compute

D2 = DD

=

(
λ1 0
0 λ2

)(
λ1 0
0 λ2

)

=

(
λ21 0
0 λ22

)
.

Next, use the associative property of matrix multiplication to compute

D3 = DD2

=

(
λ1 0
0 λ2

)(
λ21 0
0 λ22

)

=

(
λ31 0
0 λ32

)
.

The calculations shown above suggest that

Dn =

(
λn1 0
0 λn2

)
,

for positive integers n. �

(b) Assume that λ1 6= 0 and λ2 6= 0. Show that D is invertible and compute
D−1.
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Solution: In this case, det(D) = λ1λ2 6= 0; so that, D is invertible and

D−1 =
1

λ1λ2

(
λ2 0
0 λ1

)
,

or

D−1 =

(
1/λ1 0

0 1/λ2

)
,

or

D−1 =

(
λ−11 0
0 λ−12

)
.

�

8. Consider the linear system {
ẋ = −3x+ 2y;
ẏ = 4x− 5y.

(32)

Let

v1 =

(
1
−2

)
and v2 =

(
1
1

)
,

and define the vector value function(
x(t)
y(t)

)
= c1e

−7tv1 + c2e
−tv2, for t ∈ R, (33)

where c1 and c2 are constants.

(a) Verify that the vector–valued function given in (33) solves the system in
(32).

Solution: Write the system in (33) in matrix form(
ẋ
ẏ

)
= A

(
x
y

)
, (34)

where A is the 2× 2 matrix

A =

(
−3 2

4 −5

)
. (35)

Observe that

Av1 =

(
−3 2

4 −5

)(
1
−2

)
=

(
−7
14

)
= −7

(
1
−2

)
;
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so that,
Av1 = −7v1. (36)

Similarly,

Av2 =

(
−3 2

4 −5

)(
1
1

)
=

(
−1
−1

)
;

so that,
Av2 = −v2. (37)

Taking the derivative with respect to t of the vector valued function in
(33), we obtain(

ẋ(t)
ẏ(t)

)
= c1(−7)e−7tv1 + c2(−1)e−tv2, for t ∈ R;

so that, using the associative property,(
ẋ(t)
ẏ(t)

)
= c1e

−7t(−7v1) + c2e
−t(−v2), for t ∈ R.

Hence, in view of (36) and (37),(
ẋ(t)
ẏ(t)

)
= c1e

−7tAv1 + c2e
−tAv2, for t ∈ R;

so that, using the distributive property of matrix multiplication(
ẋ(t)
ẏ(t)

)
= A(c1e

−7tv1 + c2e
−tv), for t ∈ R. (38)

Comparing (33) and (38), we see that(
ẋ(t)
ẏ(t)

)
= A

(
x(t)
y(t)

)
, for t ∈ R,

which shows that the vector–valued function in (33) solves the equation
in (34), where A is given in (35). The differential equation in (34) is
equivalent to the system in (32). Therefore, the vector–valued function
given in (33) solves the system in (32), which was to be shown. �

(b) Use (33) to sketch trajectories of the system in (32) for the cases

(i) c1 = 0 and c2 = 0;

(ii) c1 6= 0 and c2 = 0;
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x

y

Figure 4: Sketch of solutions in (33) for cases (i), (ii) and (iii)

(iii) c1 = 0 and c2 6= 0.

Solution: Refer to the sketch in Figure 4.

(i) If c1 = c2 = 0 in (33),(
x(t)
y(t)

)
=

(
0
0

)
, for t ∈ R,

which corresponds to the equilibrium solution (0, 0); this is sketched
as a dot in Figure 4.

(ii) If c2 = 0 and c1 6= 0 in (33), then(
x(t)
y(t)

)
= c1e

−7tv1, for t ∈ R. (39)

The equation in (39) is the vector–parametric equation of a half–
line through the origin in the direction of v1 if c1 > 0, or a half–
line through the origin through a direction opposite that of v1 if
c1 < 0. Thus, there are two trajectories on the line parametrized by
the equation in (39) that tend to (0, 0) because e−7t decreases to 0 as
t increases. These trajectories are shown in the sketch in Figure 4.
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(iii) If c1 = 0 and c2 6= 0, (33) yields the vector–parametric equation(
x(t)
y(t)

)
= c2e

−tv2, for t ∈ R. (40)

The equation in (40) is a parametrization of two trajectories of the
system in (32): a half–line through the origin in the direction of
the vector v2 corresponding to the case c2 > 0, and a half–line in the
opposite direction corresponding to the case c2 < 0. Both trajectories
tend towards the origin because e−t decreases to 0 as t increases.

�

9. Consider the Lotka–Volterra system{
ẋ = x− xy;
ẏ = xy − y. (41)

Use the Chain Rule to derive
dy

dx
=
ẏ

ẋ
, (42)

and use this expressions to obtain an equation satisfied by the trajectories of
the system in (41) for x > 0 and y > 0.

Solution: Use the expression in (42) to obtain the differential equation

dy

dx
=
xy − y
x− xy

,

or
dy

dx
=

(x− 1)y

x(1− y)
. (43)

The differential equation in (43) can be separated to yield

1− y
y

dy =
x− 1

x
dx,

or (
1

y
− 1

)
dy =

(
1− 1

x

)
dx. (44)

Integrating on both sides of (44)∫ (
1

y
− 1

)
dy =

∫ (
1− 1

x

)
dx,
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yields
ln |y| − y = x− ln |x|+ C, (45)

where C is a constant of integration.

The expression in (45) is an equation satisfied by the trajectories of the system
in (41). �

10. Let a, b, c and d denote real numbers, and consider the system of linear equations{
ax+ by = 0;
cx+ dy = 0.

(46)

(a) Explain why x = y = 0 solves the system in (46). This solution is usually
referred to as the trivial solution of the system in (46).

Solution: Substituting 0 for x and 0 for y in the left–hand side of the
equations in (46) yields 0 in the left–hand sides of the equations. Thus,
the equations are satisfies simultaneously in this case. �

(b) Show that, if ad − bc 6= 0, then the system in (46) has only the trivial
solution.

Solution: The system in (46) can be written in matrix form

A

(
x
y

)
=

(
0
0

)
, (47)

where A is the 2× 2 matrix given by

A =

(
a b
c d

)
. (48)

Since det(A) = ad− bc 6= 0, the matrix A in (47) has an inverse A−1.

Multiply on both sides of the equation in (47) by A on the left to get

A−1A

(
x
y

)
= A−1

(
0
0

)
;

so that, using the associative property of matrix multiplication,

(A−1A)

(
x
y

)
=

(
0
0

)
,

or

I

(
x
y

)
=

(
0
0

)
, (49)
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where I is the 2× 2 identity matrix.

It follows from (49), and the calculations leading to it, that(
x
y

)
=

(
0
0

)
is the only solution of the equation in (47), which is equivalent to the
system in (46). �

(c) Assume that ad − bc = 0 and a 6= 0. Compute all the solutions of the
system in (46) in this case.

Solution: Assume that ad− bc = 0 and a 6= 0.

Then,

det

(
a c
b d

)
= 0;

so that, the parallelogram determined by the vectors
(
a b

)
and

(
c d

)
has zero area. Consequently, the vector

(
a b

)
lies in the same line as the

vector
(
c d

)
. Therefore,

(
a b

)
is a scalar multiple of

(
c d

)
; so that(

a b
)

= λ
(
c d

)
. (50)

It follows from (50) that λ 6= 0, since we are assuming that a 6= 0.

Multiply the second equation in (46) by λ to get{
ax+ by = 0;

λcx+ λdy = 0,

which, in view of (50), is equivalent to{
ax+ by = 0;
ax+ by = 0,

Hence, the system in (46) reduces to the single equation

ax+ by = 0. (51)

Thus, all points on the line in (51) solve the system (46).

Solving the equation in (51) for x yields

x = − b
a
y (52)
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Thus, setting y = −at, where t is a parameter, we obtain the parametric
equations {

x = bt;
y = −at.

Thus, the solutions of the system in (46) are all the scalar multiples of the

vector

(
b
−a

)
. �


