Math 29

Homework 1
Write a 1-3 sentence summary of what we did in class last period.

1. A body of mass m is falling with positive downward velocity v. Newton's Second Law of Motion is $F=m a$, where F represents the net downward force, and a represents the downward acceleration. The net force, F, consists of the force due to gravity, F_{g} minus the air resistance F_{r}. The force due to gravity is $m g$, where g is a constant. Assume the air resistance is proportional to the velocity of the body.
a) Write an equation expressing the net force, F, as a function of the velocity, v.
b) Write an equation expressing the acceleration, a, as a function of the velocity, v.
c) Sketch a graph of your equation in part b), and explain what your graph means.
2. For small changes in temperature, the formula for the expansion of a metal rod under a change in temperature is: $l-l_{0}=a l_{0}\left(t-t_{0}\right)$ where l is the length of the rod at temperature t, and l_{0} is the initial length at temperature t_{0}, and a is a constant which depends on the type of metal. Suppose you have a rod which was initially 100 cm long at 60 degrees Fahrenheit and made of a metal with $a=10^{-5}$.
a) Write an equation for the length of the rod as a function of the temperature.
b) Explain how the equation tells you whether the metal will expand or contract as the rod is heated.
3. We can express the concentration $[X]$ of a solution containing compound X as the ratio of moles of the dissolved compound to the number of liters of the solution, where 1 mole of a compound contains 6.0×10^{23} molecules of it. Suppose that you are given the following chemical information. Solve for $\left[H^{+}\right]$.

$$
\begin{gathered}
\frac{\left[H^{+}\right]\left[N O_{2}^{-}\right]}{\left[H N O_{2}\right]}=4.5 \times 10^{-4} \\
{\left[H^{+}\right]=\left[N O_{2}^{-}\right]} \\
{\left[H N O_{2}\right]=\left(1.00 \times 10^{-2}\right)-\left[H^{+}\right]}
\end{gathered}
$$

