EVERY GRAPH HAS AN EMBEDDING IN S^{3} CONTAINING NO NON-HYPERBOLIC KNOT

ERICA FLAPAN AND HUGH HOWARDS

(Communicated by Alexander N. Dranishnikov)

Abstract

In contrast with knots, whose properties depend only on their extrinsic topology in S^{3}, there is a rich interplay between the intrinsic structure of a graph and the extrinsic topology of all embeddings of the graph in S^{3}. For example, it was shown by Conway and Gordon that every embedding of the complete graph K_{7} in S^{3} contains a non-trivial knot. Later it was shown that for every $m \in N$ there is a complete graph K_{n} such that every embedding of K_{n} in S_{3} contains a knot Q whose minimal crossing number is at least m. Thus there are arbitrarily complicated knots in every embedding of a sufficiently large complete graph in S^{3}. We prove the contrasting result that every graph has an embedding in S^{3} such that every non-trivial knot in that embedding is hyperbolic. Our theorem implies that every graph has an embedding in S^{3} which contains no composite or satellite knots.

In contrast with knots, whose properties depend only on their extrinsic topology in S^{3}, there is a rich interplay between the intrinsic structure of a graph and the extrinsic topology of all embeddings of the graph in S^{3}. For example, it was shown in [2] that every embedding of the complete graph K_{7} in S^{3} contains a non-trivial knot. Later in [3] it was shown that for every $m \in \mathbb{N}$, there is a complete graph K_{n} such that every embedding of K_{n} in S^{3} contains a knot Q (i.e., Q is a subgraph of K_{n}) such that $\left|a_{2}(Q)\right| \geq m$, where a_{2} is the second coefficient of the Conway polynomial of Q. More recently, in [4] it was shown that for every $m \in \mathbb{N}$, there is a complete graph K_{n} such that every embedding of K_{n} in S^{3} contains a knot Q whose minimal crossing number is at least m. Thus there are arbitrarily complicated knots (as measured by a_{2} and the minimal crossing number) in every embedding of a sufficiently large complete graph in S^{3}.

In light of these results, it is natural to ask whether there is a graph such that every embedding of that graph in S^{3} contains a composite knot. Or more generally, is there a graph such that every embedding of the graph in S^{3} contains a satellite knot? Certainly, K_{7} is not an example of such a graph since Conway and Gordon [2] exhibit an embedding of K_{7} containing only the trefoil knot. In this paper we answer this question in the negative. In particular, we prove that every graph has an embedding in S^{3} such that every non-trivial knot in that embedding is hyperbolic. Our theorem implies that every graph has an embedding in S^{3} which contains no composite or satellite knots. By contrast, for any particular embedding of a graph

[^0]we can add local knots within every edge to get an embedding such that every knot in that embedding is composite.

Let G be a graph. There is an odd number n such that G is a minor of K_{n}. We will show that for every odd number n, there is an embedding of K_{n} in S^{3} such that every non-trivial knot in that embedding of K_{n} is hyperbolic. It follows that there is an embedding of G in S^{3} which contains no non-trivial non-hyperbolic knots.

Let n be a fixed odd number. We begin by constructing a preliminary embedding of K_{n} in S^{3} as follows. Let h be a rotation of S^{3} of order n with fixed point set $\alpha \cong S^{1}$. Let V denote the complement of an open regular neighborhood of the fixed point set α. Let v_{1}, \ldots, v_{n} be points in V such that for each $i, h\left(v_{i}\right)=v_{i+1}$ (throughout the paper we shall consider our subscripts $\bmod n$). These v_{i} will be the vertices of the preliminary embedding of K_{n}.
Definition 1. By a solid annulus we shall mean a 3-manifold with boundary which can be parametrized as $D \times I$ where D is a disk. We use the term the annulus boundary of a solid annulus $D \times I$ to refer to the annulus $\partial D \times I$. The ends of $D \times I$ are the disks $D \times\{0\}$ and $D \times\{1\}$. If A is an arc in a solid annulus W with one endpoint in each end of W and A co-bounds a disk in W together with an arc in ∂W, then we say that A is a longitudinal arc of W.

As follows, we embed the edges of K_{n} as simple closed curves in the quotient space $S^{3} / h=S^{3}$. Observe that since V is a solid torus, $V^{\prime}=V / h$ is also a solid torus. Let D^{\prime} denote a meridional disk for V^{\prime} which does not contain the point $v=v_{1} / h$. Let W^{\prime} denote the solid annulus $\operatorname{cl}\left(V^{\prime}-D^{\prime}\right)$ with ends D_{+}^{\prime} and D_{-}^{\prime}. Since n is odd, we can choose unknotted simple closed curves $S_{1}, \ldots, S_{\frac{n-1}{2}}$ in the solid torus V^{\prime} such that each S_{i} contains v and has winding number $n+i$ in V^{\prime}, the S_{i} are pairwise disjoint except at v, and for each $i, W^{\prime} \cap S_{i}$ is a collection of $n+i$ untangled longitudinal arcs (see Figure 1).

Figure 1. For each $i, W^{\prime} \cap S_{i}$ is a collection of $n+i$ untangled longitudinal arcs.

We define as follows two additional simple closed curves J^{\prime} and C^{\prime} in V^{\prime} whose intersections with W^{\prime} are illustrated in Figure 1. First, choose a simple closed curve J^{\prime} in V^{\prime} whose intersection with W^{\prime} is a longitudinal arc which is disjoint from and untangled with $S_{1} \cup \cdots \cup S_{\frac{n-1}{2}}$. Next we let C^{\prime} be the unknotted simple closed
curve in $W^{\prime}-\left(S_{1} \cup \cdots \cup S_{\frac{n-1}{2}} \cup J^{\prime}\right)$ whose projection is illustrated in Figure 1. In particular, C contains one half twist between J^{\prime} and the set of arcs of $S_{1} \cup \cdots \cup S_{\frac{n-1}{2}}$ which do not contain v, another half twist between those arcs of $S_{1} \cup \cdots \cup S_{\frac{n-1}{2}}$ and the set of arcs containing v, and r full twists between each of the individual arcs of S_{i} and S_{i+1} containing v. We will determine the value of r later.

Each of the $\frac{n-1}{2}$ simple closed curves $S_{1}, \ldots, S_{\frac{n-1}{2}}$ lifts to a simple closed curve consisting of n consecutive edges of K_{n}. The vertices v_{1}, \ldots, v_{n} together with these $\frac{n(n-1)}{2}$ edges give us a preliminary embedding Γ_{1} of K_{n} in S^{3}.

Lift the meridional disk D^{\prime} of the solid torus V^{\prime} to n disjoint meridional disks D_{1}, \ldots, D_{n} of the solid torus V. Lift the simple closed curve C^{\prime} to n disjoint simple closed curves C_{1}, \ldots, C_{n}, and lift the simple closed curve J^{\prime} to n consecutive arcs J_{1}, \ldots, J_{n} whose union is a simple closed curve J. The closures of the components of $V-\left(D_{1} \cup \cdots \cup D_{n}\right)$ are solid annuli, which we denote by W_{1}, \ldots, W_{n}. The subscripts of all of the lifts are chosen consistently so that for each $i, v_{i} \in W_{i}$, $C_{i} \cup J_{i} \subseteq W_{i}$, and D_{i} and D_{i+1} are the ends of the solid annulus W_{i}. For each i, the pair $\left(W_{i}-\left(C_{i} \cup J_{i}\right),\left(W_{i}-\left(C_{i} \cup J_{i}\right)\right) \cap \Gamma_{1}\right)$ is homeomorphic to ($W^{\prime}-\left(C^{\prime} \cup\right.$ $\left.\left.J^{\prime}\right),\left(W^{\prime}-\left(C^{\prime} \cup J^{\prime}\right)\right) \cap\left(S_{1} \cup \cdots \cup S_{\frac{n-1}{2}}\right)\right)$. For each i, the solid annulus W^{\prime} contains $n+i-1 \operatorname{arcs}$ of S_{i} which are disjoint from v. Hence each edge of the embedded graph Γ_{1} meets each solid annulus W_{i} in at least one arc not containing v_{i}.

Let κ be a simple closed curve in Γ_{1}. For each i, we let k_{i} denote the set of those arcs of $\kappa \cap W_{i}$ which do not contain v_{i}, and we let e_{i} denote either the single arc of $\kappa \cap W_{i}$ which does contain v_{i} or the empty set if v_{i} is not on κ. Observe that since κ is a simple closed curve, it contains at least three edges of Γ_{1}; and as we observed above, each edge of κ contains at least one arc of k_{i}. Thus for each i, k_{i} contains at least three arcs. Either e_{i} is empty, the endpoints of e_{i} are in the same end of the solid annulus W_{i}, or the endpoints of e_{i} are in different ends of W_{i}. We illustrate these three possibilities for ($W_{i}, C_{i} \cup J_{i} \cup k_{i} \cup e_{i}$) in Figure 2 as forms a), b) and c) respectively. The number of full twists represented by the labels t, u, x, or z in Figure 2 is some multiple of r depending on the particular simple closed curve κ.

Figure 2. The forms of $\left(W_{i}, C_{i} \cup J_{i} \cup k_{i} \cup e_{i}\right)$.
With each of the forms of ($W_{i}, C_{i} \cup J_{i} \cup k_{i} \cup e_{i}$) illustrated in Figure 2 we will associate an additional arc and an additional collection of simple closed curves as follows (illustrated in Figure 3). Let the arc B_{i} be the core of a solid annulus neighborhood of the union of the arcs k_{i} in W_{i} such that B_{i} is disjoint from J_{i}, C_{i},
and e_{i}. Let the simple closed curve Q be obtained from C_{i} by removing the full twists z, x, t, and u. Let Z, X, T, and U be unknotted simple closed curves which wrap around Q in place of z, x, t, and u as illustrated in Figure 3.

Figure 3. The forms of W_{i} with associated simple closed curves and the arc B_{i}.

For each i, let M_{i} denote an unknotted solid torus in S^{3} obtained by gluing together two identical copies of W_{i} along D_{i} and D_{i+1}, making sure that the endpoints of the arcs of J_{i}, B_{i}, and e_{i} match up with their counterparts in the second copy to give simple closed curves j, b, and E, respectively, in M_{i}. Thus M_{i} has a 180° rotational symmetry around a horizontal line which goes through the center of the figure and the endpoints of both copies of J_{i}, B_{i}, and e_{i}. Recall that in form a), e_{i} is the empty set, and hence so is E. Let Q_{1} and Q_{2}, X_{1} and X_{2}, Z_{1} and Z_{2}, T_{1} and T_{2}, and U_{1} and U_{2} denote the doubles of the unknotted simple closed curves Q, X, Z, T, and U respectively.

Let Y denote the core of the solid torus $\operatorname{cl}\left(S^{3}-M_{i}\right)$. We associate to Form a) of Figure 3 the link $L=Q_{1} \cup Q_{2} \cup j \cup b \cup Y$. We associate to Form b) of Figure 3 the link $L=Q_{1} \cup Q_{2} \cup j \cup b \cup Y \cup E \cup X_{1} \cup X_{2} \cup Z_{1} \cup Z_{2}$. We associate to Form c) of Figure 3 the link $L=Q_{1} \cup Q_{2} \cup j \cup b \cup Y \cup E \cup T_{1} \cup T_{2} \cup U_{1} \cup U_{2}$. Figure 4 illustrates the three forms of the link L.

The software program SnapPea ${ }^{1}$ can be used to determine whether or not a given knot or link in S^{3} is hyperbolic, and if it is, SnapPea estimates the hyperbolic volume of the complement. We used SnapPea to verify that each of the three forms of the link L illustrated in Figure 4 is hyperbolic.

A 3-manifold is unchanged by doing Dehn surgery on an unknot if the boundary slope of the surgery is the reciprocal of an integer (though such surgery may change a knot or link in the manifold). According to Thurston's Hyperbolic Dehn Surgery Theorem [1, 5], all but finitely many Dehn fillings of a hyperbolic link complement yield a hyperbolic manifold. Thus there is some $r \in \mathbb{N}$ such that for any $m \geq r$, if we do Dehn filling with slope $\frac{1}{m}$ along the components $X_{1}, X_{2}, Z_{1}, Z_{2}$ of the link L in form b) or along the components $T_{1}, T_{2}, U_{1}, U_{2}$ of the link L in form c), then we obtain a hyperbolic link $\bar{Q}_{1} \cup \bar{Q}_{2} \cup j \cup b \cup Y \cup E$, where the simple closed curves \bar{Q}_{1} and $\overline{Q_{2}}$ are obtained by adding m full twists to Q_{1} and Q_{2} in place of each of the surgered curves.

[^1]

Figure 4. The possible forms of the link L.
We fix the value of r according to the above paragraph, and this is the value of r that we use in Figure 1. Recall that the number of twists x, z, u, and t in the simple closed curves C_{i} in Figure 2 are each a multiple of r. Thus the particular simple closed curves C_{i} are determined by our choice of r together with our choice of the simple closed curve κ. Now we do Dehn fillings along X_{1} and X_{2} with slope $\frac{1}{x}$, along Z_{1} and Z_{2} with slope $\frac{1}{z}$, along U_{1} and U_{2} with slope $\frac{1}{u}$, and along T_{1} and T_{2} with slope $\frac{1}{t}$. Since x, z, u, and t are each greater than or equal to r, the link $\bar{Q}_{1} \cup \bar{Q}_{2} \cup j \cup b \cup Y \cup E$ that we obtain will be hyperbolic. In Form a), E is the empty set, and the link $Q_{1} \cup Q_{2} \cup j \cup b \cup Y \cup E$ was already seen to be hyperbolic from using SnapPea. In this case, we do no surgery and let $\bar{Q}_{1}=Q_{1}$ and $\bar{Q}_{2}=Q_{2}$. It follows that each form of $M_{i}-\left(\bar{Q}_{1} \cup \bar{Q}_{2} \cup j \cup b \cup E\right)$ is a hyperbolic 3-manifold. Observe that $M_{i}-\left(\bar{Q}_{1} \cup \bar{Q}_{2} \cup j \cup b \cup E\right)$ is the double of $W_{i}-\left(C_{i} \cup J_{i} \cup B_{i} \cup e_{i}\right)$.

Now that we have fixed C_{i}, we let $N\left(C_{i}\right), N\left(J_{i}\right), N\left(B_{i}\right)$, and $N\left(e_{i}\right)$ be pairwise disjoint regular neighborhoods of C_{i}, J_{i}, B_{i}, and e_{i} respectively in the interior of each of the forms of the solid annulus W_{i} (illustrated in Figure 2). We choose $N\left(B_{i}\right)$ such that it contains the union of the arcs k_{i}. Note that in Form a) e_{i} is the empty set and hence so is $N\left(e_{i}\right)$. Let $N\left(k_{i}\right)$ denote a collection of pairwise disjoint regular neighborhoods, each containing an arc k_{i}, such that $N\left(k_{i}\right) \subseteq N\left(B_{i}\right)$. Let
$V_{i}=\operatorname{cl}\left(W_{i}-\left(N\left(C_{i}\right) \cup N\left(J_{i}\right) \cup N\left(B_{i}\right) \cup N\left(e_{i}\right)\right)\right)$, let $\Delta=\operatorname{cl}\left(N\left(B_{i}\right)-N\left(k_{i}\right)\right)$, and let $V_{i}^{\prime}=V_{i} \cup \Delta$. Since $N\left(B_{i}\right)$ is a solid annulus, it has a product structure $D^{2} \times I$. Without loss of generality, we assume that each of the components of $N\left(k_{i}\right)$ respects the product structure of $N\left(B_{i}\right)$. Thus $\Delta=F \times I$ where F is a disk with holes.

Definition 2. Let X be a 3-manifold. A sphere in X is said to be essential if it does not bound a ball in X. A properly embedded disk D in X is said to be essential if ∂D does not bound a disk in ∂X. A properly embedded annulus is said to be essential if it is incompressible and not boundary parallel. A torus in X is said to be essential if it is incompressible and not boundary parallel.

Lemma 1. For each i, V_{i}^{\prime} contains no essential torus, sphere, or disk whose boundary is in $D_{i} \cup D_{i+1}$. Also, any incompressible annulus in V_{i}^{\prime} whose boundary is in $D_{i} \cup D_{i+1}$ either is boundary parallel or can be expressed as $\sigma \times I$ (possibly after a change in parameterization of Δ), where σ is a non-trivial simple closed curve in $D_{i} \cap \Delta$.

Proof. Since k_{i} contains at least three disjoint arcs, F is a disk with at least three holes. Let β denote the double of Δ along $\Delta \cap\left(D_{i} \cup D_{i+1}\right)$. Then $\beta=F \times S^{1}$. Now it follows from Waldhausen [7] that β contains no essential sphere or properly embedded disk and that any incompressible torus in β can be expressed as $\sigma \times S^{1}$ (after a possible change in parameterization of β) where σ is a non-trivial simple closed curve in $D_{i} \cap \Delta$.

Let ν denote the double of V_{i} along $V_{i} \cap\left(D_{i} \cup D_{i+1}\right)$. Observe that $\nu \cup \beta$ is the double of V_{i}^{\prime} along $V_{i}^{\prime} \cap\left(D_{i} \cup D_{i+1}\right)$. Now the interior of ν is homeomorphic to $M_{i}-\left(\bar{Q}_{1} \cup \bar{Q}_{2} \cup j \cup b \cup E\right)$. Since we saw above that $M_{i}-\left(\bar{Q}_{1} \cup \bar{Q}_{2} \cup j \cup b \cup E\right)$ is hyperbolic, it follows from Thurston $[5,6]$ that ν contains no essential sphere or torus and no properly embedded disk or annulus.

We see as follows that $\nu \cup \beta$ contains no essential sphere and that any essential torus in $\nu \cup \beta$ can be expressed (after a possible change in parameterization of β) as $\sigma \times S^{1}$, where σ is a non-trivial simple closed curve in $D_{i} \cap \Delta$. Let τ be an essential sphere or torus in $\nu \cup \beta$, and let γ denote the torus $\nu \cap \beta$. By doing an isotopy as necessary, we can assume that τ intersects γ in a minimal number of disjoint simple closed curves. Suppose there is a curve of intersection which bounds a disk in the essential surface τ. Let c be an innermost curve of intersection on τ which bounds a disk δ in τ. Then δ is a properly embedded disk in either γ or β. Since neither ν nor β contains a properly embedded essential disk or an essential sphere, there is an isotopy of τ which removes c from the collection of curves of intersection. Thus by the minimality of the number of curves in $\tau \cap \gamma$, we can assume that none of the curves in $\tau \cap \gamma$ bounds a disk in τ.

Suppose that τ is an essential sphere in $\nu \cup \beta$. Since none of the curves in $\tau \cap \gamma$ bounds a disk in τ, τ must be contained entirely in either ν or β. However, we saw above that neither ν nor β contains any essential sphere. Thus τ cannot be an essential sphere and hence must be an essential torus. Since $\tau \cap \gamma$ is minimal, if $\tau \cap \nu$ is non-empty, then the components of τ in ν are all incompressible annuli. However, we saw above that ν contains no essential annuli. Thus $\tau \cap \nu$ is empty. Since ν contains no essential torus, the essential torus τ must be contained in β. Hence τ can be expressed (after a possible change in parameterization of β) as $\sigma \times S^{1}$, where σ is a non-trivial simple closed curve in $D_{i} \cap \Delta$.

Now we consider essential surfaces in V_{i}^{\prime}. Suppose that V_{i}^{\prime} contains an essential sphere S. Since $\nu \cap \beta$ contains no essential sphere, S bounds a ball B in $\nu \cap \beta$. Now the ball B cannot contain any of the boundary components of $\nu \cap \beta$. Thus B cannot contain either D_{i} or D_{i+1}. Since S is disjoint from $D_{i} \cup D_{i+1}$, it follows that B must be disjoint from $D_{i} \cup D_{i+1}$. Thus B is contained in V_{i}^{\prime}. Hence V_{i}^{\prime} cannot contain an essential sphere.

We see as follows that V_{i}^{\prime} cannot contain an essential disk whose boundary is in $D_{i} \cup D_{i+1}$. Let ϵ be a disk in V_{i}^{\prime} whose boundary is in $D_{i} \cup D_{i+1}$. Let ϵ^{\prime} denote the double of ϵ in $\nu \cup \beta$. Then ϵ^{\prime} is a sphere which meets $D_{i} \cup D_{i+1}$ in the simple closed curve $\partial \epsilon$. Since $\nu \cup \beta$ contains no essential sphere, ϵ^{\prime} bounds a ball B in $\nu \cup \beta$. It follows that B cannot contain any of the boundary components of $\nu \cup \beta$. Thus B cannot contain any of the boundary components of $D_{i} \cup D_{i+1}$. Therefore, $D_{i} \cup D_{i+1}$ intersects the ball B in a disk bounded by $\partial \epsilon$. Hence the simple closed curve $\partial \epsilon$ bounds a disk in $\left(D_{i} \cup D_{i+1}\right) \cap V_{i}^{\prime}$, and therefore the disk ϵ was not essential in V_{i}^{\prime}. Thus, V_{i}^{\prime} contains no essential disk whose boundary is in $D_{i} \cup D_{i+1}$.

Now suppose that V_{i}^{\prime} contains an essential torus T. Suppose that T is not essential in $\nu \cup \beta$. Then either T is boundary parallel or T is compressible in $\nu \cup \beta$. However, T cannot be boundary parallel in $\nu \cup \beta$ since $T \subseteq V_{i}^{\prime}$. Thus T must be compressible in $\nu \cup \beta$. Let δ be a compression disk for T in $\nu \cup \beta$. Since V_{i}^{\prime} contains no essential sphere or essential disk whose boundary is in $D_{i} \cup D_{i+1}$, we can use an innermost disk argument to push δ off of $D_{i} \cup D_{i+1}$. Hence T is compressible in V_{i}^{\prime}, contrary to our initial assumption. Thus T must be essential in $\nu \cup \beta$. It follows that T has the form $\sigma \times S^{1}$, where $\sigma \subseteq D_{i} \cap \Delta$. However, since $\nu \cup \beta$ is the double of V_{i}^{\prime}, the intersection of $\sigma \times S^{1}$ with V_{i}^{\prime} is an annulus $\sigma \times I$. In particular, V_{i}^{\prime} cannot contain $\sigma \times S^{1}$. Therefore, V_{i}^{\prime} cannot contain an essential torus.

Suppose that V_{i}^{\prime} contains an incompressible annulus α whose boundary is in $D_{i} \cup D_{i+1}$. Let τ denote the double of α in $\nu \cup \beta$. Then τ is a torus. If τ is essential in $\nu \cup \beta$, then we saw above that τ can be expressed as $\sigma \times S^{1}$ (after a possible change in parameterization of β) where σ is a non-trivial simple closed curve in $D_{i} \cap \Delta$. In this case, α can be expressed as $\sigma \times I$.

On the other hand, if τ is inessential in $\nu \cup \beta$, then either τ is parallel to a component of $\partial(\nu \cup \beta)$, or τ is compressible in $\nu \cup \beta$. If τ is parallel to a boundary component of $\nu \cup \beta$, then α is parallel to the annulus boundary component of W_{i}, $N\left(J_{i}\right), N\left(e_{i}\right), N\left(B_{i}\right)$, or one of the boundary components of $N\left(k_{i}\right)$.

Thus we suppose that the torus τ is compressible in $\nu \cup \beta$. In this case, it follows from an innermost loop-outermost arc argument that either the annulus α is compressible in V_{i}^{\prime} or α is ∂-compressible in V_{i}^{\prime}. Since we assumed α was incompressible in V_{i}^{\prime}, α must be ∂-compressible in V_{i}^{\prime}. Now according to a lemma of Waldhausen [7], if a 3-manifold contains no essential sphere or properly embedded essential disk, then any annulus which is incompressible but boundary compressible must be boundary parallel. We saw above that V_{i}^{\prime} contains no essential sphere or essential disk whose boundary is in $D_{i} \cup D_{i+1}$. Since the boundary of the incompressible annulus α is contained in $D_{i} \cup D_{i+1}$, it follows from Waldhausen's lemma that α is boundary parallel in V_{i}^{\prime}.

It follows from Lemma 1 that for any i, any incompressible annulus in V_{i}^{\prime} whose boundary is in $D_{i} \cup D_{i+1}$ either is parallel to an annulus in D_{i} or D_{i+1} or co-bounds a solid annulus in the solid annulus W_{i} with ends in $D_{i} \cup D_{i+1}$. Recall that κ is a simple closed curve in Γ_{1} such that $\kappa \cap W_{i}=k_{i} \cup e_{i}$. Also $J=J_{1} \cup \cdots \cup J_{n}$. Let $N(\kappa)$
and $N(J)$ be regular neighborhoods of the simple closed curves κ and J respectively, such that for each $i, N(\kappa) \cap W_{i}=N\left(k_{i}\right) \cup N\left(e_{i}\right)$ and $N(J) \cap W_{i}=N\left(J_{i}\right)$. Recall that $V=W_{1} \cup \cdots \cup W_{n}$. Thus $\operatorname{cl}\left(V-\left(N\left(C_{1}\right) \cup \cdots \cup N\left(C_{n}\right) \cup N(J) \cup N(\kappa)\right)\right)=V_{1}^{\prime} \cup \cdots \cup V_{n}^{\prime}$.

Proposition 1. $H=\operatorname{cl}\left(V-\left(N\left(C_{1}\right) \cup \cdots \cup N\left(C_{n}\right) \cup N(J) \cup N(\kappa)\right)\right)$ contains no essential sphere or torus.

Proof. Suppose that S is an essential sphere in H. Without loss of generality, S intersects the collection of disks $D_{1} \cup \cdots \cup D_{n}$ transversely in a minimal number of simple closed curves. By Lemma 1 , for each i, V_{i}^{\prime} contains no essential sphere or essential disk whose boundary is in $D_{i} \cup D_{i+1}$. Thus the sphere S cannot be entirely contained in one V_{i}^{\prime}. Let c be an innermost curve of intersection on S. Then c bounds a disk δ in some V_{i}^{\prime}. However, since the number of curves of intersection is minimal, δ must be essential, contrary to Lemma 1. Hence H contains no essential sphere.

Suppose T is an incompressible torus in H. We show as follows that T is parallel to some boundary component of H. Without loss of generality, the torus T intersects the collection of disks $D_{1} \cup \cdots \cup D_{n}$ transversely in a minimal number of simple closed curves. By Lemma 1, for each i, V_{i}^{\prime} contains no essential torus, essential sphere, or essential disk whose boundary is in $D_{i} \cup D_{i+1}$. Thus the torus T cannot be entirely contained in one V_{i}^{\prime}. Also, by the minimality of the number of curves of intersection, we can assume that if $V_{i}^{\prime} \cap T$ is non-empty, then it consists of a collection of incompressible annuli in V_{i}^{\prime} whose boundary components are in $D_{i} \cup D_{i+1}$. Furthermore, by Lemma 1, each such annulus either is boundary parallel or is contained in $N\left(B_{i}\right)$ and can be expressed (after a possible change in parameterization of $\left.N\left(B_{i}\right)\right)$ as $\sigma_{i} \times I$ for some non-trivial simple closed curve σ_{i} in $D_{i} \cap \Delta$. If some annulus component of $V_{i}^{\prime} \cap T$ is parallel to an annulus in $D_{i} \cup D_{i+1}$, then we could remove that component by an isotopy of T. Thus we can assume that each annulus in $V_{i}^{\prime} \cap T$ is parallel to the annulus boundary component of one of the solid annuli $W_{i}, N\left(J_{i}\right)$, or $N\left(e_{i}\right)$, or can be expressed as $\sigma_{i} \times I$. In any of these cases the annulus co-bounds a solid annulus in W_{i} with ends in $D_{i} \cup D_{i+1}$.

Consider some i such that $V_{i}^{\prime} \cap T$ is non-empty. Hence it contains an incompressible annulus A_{i} which has one of the above forms. By the connectivity of the torus T, either there is an incompressible annulus $A_{i+1} \subseteq V_{i+1}^{\prime} \cap T$ such that A_{i} and A_{i+1} share a boundary component, or there is an incompressible annulus $A_{i-1} \subseteq V_{i-1}^{\prime} \cap T$ such that A_{i} and A_{i-1} share a boundary component, or both. We will assume, without loss of generality, that there is an incompressible annulus $A_{i+1} \subseteq V_{i+1}^{\prime} \cap T$ such that A_{i} and A_{i+1} share a boundary component. Now it follows that A_{i} co-bounds a solid annulus F_{i} in W_{i} with ends in $D_{i} \cup D_{i+1}$ and that A_{i+1} co-bounds a solid annulus F_{i+1} in W_{i+1} together with two disks in $D_{i+1} \cup D_{i+2}$. Hence the solid annuli F_{i} and F_{i+1} meet in one or two disks in D_{i+1}.

We consider several cases where A_{i} is parallel to some boundary component of V_{i}^{\prime}. Suppose that A_{i} is parallel to the annulus boundary component of the solid annulus $N\left(J_{i}\right)$. Then the solid annulus F_{i} contains $N\left(J_{i}\right)$ and is disjoint from the arcs k_{i} and e_{i}. Now the arcs J_{i} and J_{i+1} share an endpoint contained in $F_{i} \cap F_{i+1}$, and there is no endpoint of any arc of k_{i} or e_{i} in $F_{i} \cap F_{i+1}$. It follows that the solid annulus F_{i+1} contains the arc J_{i+1} and contains no arcs of k_{i+1}. Hence, by Lemma 1, the incompressible annulus A_{i+1} must be parallel to $\partial N\left(J_{i+1}\right)$. Continuing from one V_{i}^{\prime} to the next, we see that in this case T is parallel to $\partial N(J)$.

Suppose that A_{i} is parallel to the annulus boundary component of the solid annulus $\partial N\left(e_{i}\right)$ or one of the solid annuli in $\partial N\left(k_{i}\right)$. Using an argument similar to that in the above paragraph, we see that A_{i+1} is parallel to the annulus boundary component of the solid annulus $\partial N\left(e_{i+1}\right)$ or one of the solid annuli in $\partial N\left(k_{i+1}\right)$. Continuing as above, we see that in this case T is parallel to $\partial N(\kappa)$.

Suppose that the annulus A_{i} is parallel to the annulus boundary component of the solid annulus W_{i}. Then the solid annulus F_{i} contains all of the arcs of J_{i}, k_{i}, and e_{i}. It follows as above that the solid annulus F_{i+1} contains the arc J_{i+1} and some arcs of $k_{i+1} \cup e_{i+1}$. Thus by Lemma $1, A_{i+1}$ must be parallel to the annulus boundary component of the solid annulus W_{i+1}. Continuing in this way, we see that in this case T is parallel to ∂V.

Thus we now assume that no component of any $V_{i}^{\prime} \cap T$ is parallel to an annulus boundary component of V_{i}^{\prime}. Hence if any $V_{i}^{\prime} \cap T$ is non-empty, then by Lemma 1 , it consists of disjoint incompressible annuli in $N\left(B_{i}\right)$ which can each be expressed (after a possible re-parametrization of $\left.N\left(B_{i}\right)\right)$ as $\sigma_{i} \times I$ for some non-trivial simple closed curve $\sigma_{i} \subseteq D_{i} \cap \Delta$. Choose i such that $V_{i}^{\prime} \cap T$ is non-empty. Since $N\left(B_{i}\right)$ is a solid annulus, there is an innermost incompressible annulus A_{i} of $N\left(B_{i}\right) \cap T$. Now A_{i} bounds a solid annulus F_{i} in $N\left(B_{i}\right)$, and F_{i} contains more than one arc of k_{i}. Since A_{i} is innermost in $N\left(B_{i}\right), \operatorname{int}\left(F_{i}\right)$ is disjoint from T. Now there is an incompressible annulus A_{i+1} in $V_{i+1}^{\prime} \cap T$ such that A_{i} and A_{i+1} meet in a circle in D_{i+1}. Furthermore, this circle bounds a disk in D_{i+1} which is disjoint from T and, by our assumption, is contained in $N\left(B_{i}\right)$. Thus by Lemma 1 , the incompressible annulus A_{i+1} has the form $\sigma_{i+1} \times I$ for some non-trivial simple closed curve $\sigma_{i+1} \subseteq$ $D_{i+1} \cap \Delta$. Thus A_{i+1} bounds a solid annulus F_{i+1} in $N\left(B_{i+1}\right)$, and $\operatorname{int}\left(F_{i+1}\right)$ is also disjoint from T. We continue in this way considering consecutive annuli to conclude that for every j, every component A_{j} of $T \cap V_{j}^{\prime}$ is an incompressible annulus which bounds a solid annulus F_{j} whose interior is disjoint from T.

Recall that $V=W_{1} \cup \cdots \cup W_{n}$ is a solid torus. Let Q denote the component of $V-T$ which is disjoint from ∂V. Then Q is the union of the solid annuli F_{j}. Since some F_{i} contains some arcs of k_{i}, the simple closed curve κ must be contained in Q.

Recall that the simple closed curve κ contains at least three vertices of the embedded graph Γ_{1}. Also each vertex of κ is contained in some arc e_{j}. Since each such e_{j} satisfies $e_{j} \subseteq \kappa \subseteq Q$, some component F_{j} of $Q \cap W_{j}$ contains the arc e_{j}. By our assumption, for any $V_{i}^{\prime} \cap T$ which is non-empty, $V_{i}^{\prime} \cap T$ consists of disjoint incompressible annuli in $N\left(B_{i}\right)$. In particular, $V_{j} \cap T \subseteq N\left(B_{i}\right)$. Now the annulus boundary of F_{j} is contained in $N\left(B_{j}\right)$ and hence $F_{j} \subseteq N\left(B_{j}\right)$. But this is impossible since $e_{j} \subseteq F_{j}$ and e_{j} is disjoint from $N\left(B_{j}\right)$. Hence our assumption that no component of any $V_{i}^{\prime} \cap T$ is parallel to an annulus boundary component of V_{i}^{\prime} is wrong. Thus, as we saw in the previous cases, T must be parallel to a boundary component of H. Therefore H contains no essential annulus.

Recall that the value of r, the simple closed curves, and the manifold H all depend on the particular choice of simple closed curve κ. In the following theorem we do not fix a particular κ, so none of the above are fixed.

Theorem 1. Every graph can be embedded in S^{3} in such a way that every nontrivial knot in the embedded graph is hyperbolic.

Proof. Let G be a graph, and let $n \geq 3$ be an odd number such that G is a minor of the complete graph on n vertices, K_{n}. Let Γ_{1} be the embedding of K_{n} given in our preliminary construction. Then Γ_{1} contains at most finitely many simple closed curves, $\kappa_{1}, \ldots, \kappa_{m}$. For each κ_{j}, we use Thurston's Hyperbolic Dehn Surgery Theorem [1,5] to choose an r_{j} in the same manner that we chose r after we fixed a particular simple closed curve κ. Now let $R=\max \left\{r_{1}, \ldots, r_{m}\right\}$, and let R be the value of r in Figure 1. This determines the simple closed curves C_{1}, \ldots, C_{n}.

Let $P=\operatorname{cl}\left(V-\left(N\left(C_{1}\right) \cup \cdots \cup N\left(C_{n}\right) \cup N(J)\right)\right)$ where V and J are given in our preliminary construction. Then the embedded graph is such that $\Gamma_{1} \subseteq P$. For each $j=1, \ldots m$, let $H_{j}=\operatorname{cl}\left(P-N\left(\kappa_{j}\right)\right)$. It follows from Proposition 1 that each H_{j} contains no essential sphere or torus. Since each H_{j} has more than three boundary components, no H_{j} can be Seifert fibered. Hence by Thurston's Hyperbolization Theorem [6], every H_{j} is a hyperbolic manifold.

We will glue solid tori Y_{1}, \ldots, Y_{n+2} to P along its $n+2$ boundary components $\partial V, \partial N\left(C_{1}\right), \ldots, \partial N\left(C_{n}\right)$, and $\partial N(J)$ to obtain a closed manifold \bar{P} as follows. For each j, any gluing of solid tori along the boundary components of P defines a Dehn filling of $H_{j}=\operatorname{cl}\left(P-N\left(\kappa_{j}\right)\right)$ along all of its boundary components except $\partial N\left(\kappa_{j}\right)$. Since each H_{j} is hyperbolic, by Thurston's Hyperbolic Dehn Surgery Theorem [1,5], all but finitely many such Dehn fillings of H_{j} result in a hyperbolic 3 -manifold. Furthermore, since P is obtained by removing solid tori from S^{3}, for any integer q, if we attach the solid tori Y_{1}, \ldots, Y_{n+2} to P with slope $\frac{1}{q}$, then $\bar{P}=S^{3}$. In this case each $H_{j} \cup Y_{1} \cup \cdots \cup Y_{n+2}$ is the complement of a knot in S^{3}. There are only finitely many H_{j} 's, and for each j, only finitely many slopes $\frac{1}{q}$ are excluded by Thurston's Hyperbolic Dehn Surgery Theorem. Thus there is some integer q such that if we glue the solid tori Y_{1}, \ldots, Y_{n+2} to any of the H_{j} along $\partial N\left(C_{1}\right), \ldots, \partial N\left(C_{n}\right), \partial N(J)$, and ∂V with slope $\frac{1}{q}$, then we obtain the complement of a hyperbolic knot in S^{3}.

Let Γ_{2} denote the re-embedding of Γ_{1} obtained as a result of gluing the solid tori Y_{1}, \ldots, Y_{n+2} to the boundary components of P with slope $\frac{1}{q}$. Now Γ_{2} is an embedding of K_{n} in S^{3} such that every non-trivial knot in Γ_{2} is hyperbolic. Now there is a minor G^{\prime} of the embedded graph Γ_{2}, which is an embedding of our original graph G, such that every non-trivial knot in G^{\prime} is hyperbolic.

References

[1] R. Benedetti and C. Petronio, Lectures on Hyperbolic Geometry, Universitext, Springer-Verlag, Berlin (1992). MR1219310 (94e:57015)
[2] J. Conway and C. Gordon, Knots and links in spatial graphs, J. Graph Theory 7 (1983) 445-453. MR722061 (85d:57002)
[3] E. Flapan, Intrinsic knotting and linking of complete graphs, Algebraic and Geometric Topology 2 (2002) 371-380. MR1917057 (2003g:57006)
[4] E. Flapan, B. Mellor, and R. Naimi, Intrinsic linking and knotting are arbitrarily complex, Fundamentica Mathematicae 201 (2008), 131-148.
[5] W. Thurston, Three-Dimensional Geometry and Topology, Vol. 1, edited by Silvio Levy, Princeton Mathematical Series, 35, Princeton University Press, 1997. MR1435975 (97m:57016)
[6] W. Thurston, Three-dimensional manifolds, Kleinian groups, and hyperbolic geometry, Bull. Amer. Soc. (N.S.) 6 (1982) 357-381. MR648524 (83h:57019)
[7] F. Waldhausen, Eine Klasse von 3-dimensionalen Mannigfaltigkeiten. I, II, Invent. Math. 3 (1967) 308-333; ibid. 4 (1967) 87-117. MR0235576 (38:3880)

Department of Mathematics, Pomona College, 610 North College Avenue, Claremont, California 91711-6348

Department of Mathematics, Wake Forest University, P.O. Box 7388, Winston-Salem, North Carolina 27109-7388

[^0]: Received by the editors October 31, 2008, and, in revised form, March 16, 2009.
 2000 Mathematics Subject Classification. Primary 57M25; Secondary 05C10.

[^1]: ${ }^{1}$ Available at http://www.geometrygames.org/SnapPea/index.html.

