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TOPOLOGICAL SYMMETRY GROUPS OF COMPLETE
GRAPHS IN THE 3-SPHERE

ERICA FLAPAN, RAMIN NAIMI and HARRY TAMVAKIS

Abstract

The orientation preserving topological symmetry group of a graph embedded in the 3-sphere is the
subgroup of the automorphism group of the graph consisting of those automorphisms which can
be induced by an orientation preserving homeomorphism of the ambient space. We characterize
all possible orientation preserving topological symmetry groups of embeddings of complete graphs
in the 3-sphere.

1. Introduction

The topological symmetry group of an embedded graph in the 3-sphere was first
defined by Jon Simon [9] as a way of describing the symmetries of flexible molecules.
The paper [6] began a systematic study of these groups for arbitrary finite and
connected embedded graphs. Our aim here is to determine the set of all orienta-
tion preserving topological symmetry groups for embeddings of complete graphs
in S3.

An embedded graph Γ is a pair (V, E) of sets of vertices V and edges E such that
V is a set of points in S3, every edge is a smoothly embedded arc in S3 between two
vertices, and the interior of each edge contains no vertex and no point of any other
edge. We shall abuse notation and say that an embedded graph Γ is an embedding
of its underlying abstract graph γ.

We will be considering homeomorphisms g of S3 which take an embedded graph
Γ to itself. We will use the notation g : (S3,Γ) → (S3,Γ) to mean not only that
g(Γ) = Γ, but that g(V ) = V and g(E) = E as well. Any such g defines an auto-
morphism of the underlying abstract graph γ; we shall say that this automorphism
is induced by g. The topological symmetry group TSG(Γ) is defined to be the
subgroup of Aut(γ) consisting of those automorphisms which are induced by some
homeomorphism g : (S3,Γ) → (S3,Γ). If we allow only orientation preserving
homeomorphisms of S3, we obtain the orientation preserving topological symmetry
group TSG+(Γ).

Topological symmetry groups of embeddings of the complete graph Kn are inter-
esting to consider because Kn has the largest possible automorphism group of any
graph with n vertices. For every n ! 5 it is not hard to find an embedding Γ of Kn

with TSG(Γ) = Sn (the symmetric group). However, it was shown in [5] that, for
any embedding Γ of Kn with n " 6, the cycle automorphism (1234) of Kn cannot
be induced by any homeomorphism of (S3,Γ). Thus if Γ is an embedding of Kn

with n " 6, then TSG(Γ) is a proper subgroup of Sn.
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Other known examples of topological symmetry groups of embedded complete
graphs include the following: the trivial group can be obtained for any n " 4 by
letting Γ be an embedding of Kn that has non-homeomorphic knots tied in every
edge; and for every n " 7 the dihedral group Dn was shown by Noda [7] to be
TSG(Γ) for a particular embedding Γ of Kn.

For n ! 3, it is not hard to see that each of the non-trivial subgroups of Aut(Kn)
can be TSG+(Γ) for some embedding Γ of Kn. So we concentrate on the case
where n " 4. In this case, Theorem 2 of [6] shows that, for any embedding Γ of Kn,
TSG+(Γ) is isomorphic to a finite subgroup of the group Diff+(S3) of orientation
preserving diffeomorphisms of S3. Our task is therefore to determine which of the
finite subgroups of Diff+(S3) can actually occur for embeddings of complete graphs.
This is the content of our main result, which is the following.

Theorem 1. A finite group H is TSG+(Γ) for some embedding Γ of some
complete graph if and only if H is isomorphic to a finite subgroup of either SO(3)
or Dm × Dm for some odd m.

We begin by proving in Proposition 1 that we only need to consider those
embeddings Γ of complete graphs such that TSG+(Γ) is induced by an isomorphic
group of orientation preserving isometries of S3. Furthermore, in Lemma 2 we prove
that, for every such embedding Γ of a complete graph, the involutions in TSG+(Γ)
must satisfy a key condition. The proof that the groups listed in Theorem 1 are
the only ones possible proceeds in Section 3 by considering all finite subgroups G
of SO(4) that satisfy this condition and examining two separate cases, according to
whether or not G preserves a standard Hopf fibration of S3. In Section 4, we prove
that all of the groups listed in Theorem 1 can actually occur as TSG+(Γ) for some
embedding Γ of some complete graph Kn.

2. Preliminary results

Let Γ be a graph embedded in S3 and let H be a subgroup of TSG+(Γ). Suppose
G is a group of orientation preserving homeomorphisms of (S3,Γ) such that for
every a ∈ H there is a ga ∈ G which induces a on Γ, and every g ∈ G induces some
element of H on Γ. Then we say that G induces H on Γ. A finite group H is said
to be realizable by an embedded graph Γ if H ∼= TSG+(Γ).

We begin by recalling a result proved in [6].

Lemma 1 [6]. Let Ω be an embedded 3-connected graph, and let H = TSG+(Ω).
Then Ω can be re-embedded as ∆ such that H ! TSG+(∆) and TSG+(∆) is
induced by an isomorphic subgroup of Diff+(S3).

This lemma tells us that, in order to classify all orientation preserving topological
symmetry groups H of embeddings of complete graphs with at least four vertices,
we only need to consider embeddings for which H is induced on the graph by an
isomorphic finite subgroup G of Diff+(S3). In analyzing the possibilities for G,
it is helpful to look at the fixed point sets of elements of G. Smith characterized
the fixed point sets of finite order homeomorphisms of homology spheres [10]. In
particular, he showed that the fixed point set, fix(g), of any non-trivial orientation
preserving finite order homeomorphism g of S3 is either empty or homeomorphic
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to S1. This result will be a useful tool for us, which we refer to as Smith theory.
Note that if g is an orientation preserving isometry of S3, then this may be proved
without making use of Smith’s work. However, for consistency we will nonetheless
refer to this result as Smith theory. Using Smith theory we are able to put strong
conditions on the involutions in G.

Lemma 2. Let Γ be an embedding of some complete graph Kn with n " 4, and
let G be a finite subgroup of Diff+(S3) which leaves Γ setwise invariant. For every
involution g ∈ G, fix(g) ∼= S1, and no h ∈ G distinct from g satisfies fix(h) = fix(g).

Proof. Let g ∈ G be an involution. If g fixes any point of S3, then by Smith
theory fix(g) ∼= S1. Since g has finite order and g(Γ) = Γ, if g fixes every vertex of
Γ then fix(g) would contain Γ. As n " 4, this would contradict Smith theory. Hence
there is some vertex v which is not fixed by g. Let e be the edge connecting v and
g(v). Then g(e) = e, and hence g fixes precisely one point of e. Thus fix(g) ∼= S1

and g fixes precisely one point of each edge whose vertices are interchanged by g.
It follows that every vertex of Γ is either contained in fix(g) or is an endpoint of an
edge meeting fix(g).

Now suppose that h ∈ G such that fix(h) = fix(g). Let v be a vertex of Γ.
If v ∈ fix(g), then v is fixed by both g and h. Suppose that v %∈ fix(g). Then v is
a vertex of an edge e meeting fix(g) = fix(h). Thus both g and h interchange the
endpoints of e. Hence g and h must induce precisely the same automorphism on
the vertices of Γ. Since G is a finite group, it follows that hg−1 fixes Γ pointwise.
Now since n > 3, by Smith theory, h = g.

We will use the above lemmas as follows to prove that we only need to consider
finite subgroups of SO(4) rather than finite subgroups of Diff+(S3).

Proposition 1. Let Ω be an embedding of some Kn, and let H = TSG+(Ω).
Then either H is a cyclic group of odd order or Kn can be re-embedded as Γ such
that H ! TSG+(Γ) and TSG+(Γ) is induced by an isomorphic subgroup of SO(4).

Proof. First suppose that n ! 3. Let Γ be a symmetric planar embedding of
Kn. Then Aut(Γ) = TSG+(Γ) is induced by an isomorphic subgroup of SO(4).

Now assume that n > 3 and H is not a cyclic group of odd order. Since Kn

is 3-connected, it follows from Lemma 1 that Ω can be re-embedded as ∆ such
that H ! TSG+(∆) and TSG+(∆) is induced by an isomorphic finite subgroup
F of Diff+(S3). Suppose F acts freely on S3. By Lemma 2, |F | must be odd.
However, cyclic groups are the only odd order groups which can act freely on S3

(see [8, 6.2.1 and 6.3 i–iii]); hence F cannot act freely on S3. Thus by Smith theory,
F contains some element whose fixed point set is homeomorphic to S1. Now by
Thurston’s Orbifold Theorem [1–3], F is conjugate to a subgroup G of SO(4) by an
orientation preserving diffeomorphism f . Let Γ = f(∆); then G induces TSG+(Γ)
and G ∼= F ∼= TSG+(∆) ∼= TSG+(Γ).

Let H = TSG+(Γ) for some embedding Γ of some complete graph. By Propo-
sition 1, we can assume that either H is a cyclic group of odd order or there is
an isomorphic finite subgroup of SO(4) which induces H on Γ. If H is a finite
cyclic group, then it is one of the groups listed in Theorem 1. So we assume that



240 ERICA FLAPAN, RAMIN NAIMI AND HARRY TAMVAKIS

H is induced on Γ by an isomorphic finite subgroup of SO(4). This assumption,
together with the conclusion of Lemma 2, is all that we will use about topological
symmetry groups in order to prove that H is isomorphic to one of the groups listed
in Theorem 1. Thus, rather than continuing to work with topological symmetry
groups, we shall work with arbitrary finite subgroups of SO(4) which satisfy the
conclusion of Lemma 2. Since the condition on involutions specified in the conclusion
of Lemma 2 will play an important role in our proofs, we shall henceforth refer to
it as the Involution Condition. Specifically, we make the following definition.

Definition 1. A finite subgroup G of Diff+(S3) is said to satisfy the Involution
Condition if, for every involution g ∈ G, fix(g) ∼= S1, and no h ∈ G distinct from g
satisfies fix(h) = fix(g).

Observe that the Involution Condition implies that, if h ∈ G with even order
greater than 2, then h must be fixed point free.

3. Subgroups of SO(4) that satisfy the Involution Condition

Let G be a finite subgroup of SO(4) that satisfies the Involution Condition.
In this section we show that G is isomorphic to a finite subgroup of either SO(3)
or Dm × Dm for some odd m.

We consider two cases according to whether or not G preserves a standard Hopf
fibration of S3. First we assume that G does preserve such a fibration of S3.
Note that the Hopf fibration has no exceptional fibers.

We will use the following terminology.

Notation. Let π : G → Gb denote the projection map from G to the group Gb

acting on the base space of the fibration. Let N = ker(π), let G+
b denote the

orientation preserving subgroup of Gb, and let G+ = π−1(G+
b ). We thus have

the following commutative diagram with exact rows of subgroups of SO(4).

1 !! N !! G+

!"

""

!! G+
b
!"

""

!! 1

1 !! N !! G
π !! Gb

!! 1

Since G preserves a standard Hopf fibration, Gb is a group of isometries of a
round S2 with the usual Riemannian metric. Hence G+

b is a finite subgroup of
SO(3). Since any non-trivial element of SO(3) fixes precisely two points of S2, any
element of G+ − N leaves precisely two fibers of S3 setwise invariant. Also, since
S3 and S2 are each orientable, every h ∈ N preserves the orientation of every fiber.
Thus since N is determined by its action on a single fiber, N is necessarily a cyclic
group.

We begin by using Smith theory and the Involution Condition to prove three
elementary facts.



TOPOLOGICAL SYMMETRY GROUPS OF COMPLETE GRAPHS IN S3 241

Fact 1. Let g ∈ G. Then the following are equivalent.
(1) g reverses the orientation of some fiber.
(2) g reverses the orientation of a circle of fibers and leaves no other fiber setwise

invariant.
(3) π(g) is a reflection.
(4) g %∈ G+ and order(g) = 2.

Proof. Clearly (2) implies (1). We prove that (1) implies (2) and (3), that (3)
implies (1) and (4), and that (4) implies (3).

Suppose that g reverses the orientation of some fiber l. Then g fixes precisely two
points on l, and hence by Smith theory fix(g) ∼= S1. Thus there must be a circle of
fibers which are reversed by g, and hence π(g) pointwise fixes a circle C which is
the projection of these fibers. Since every element of N preserves the orientation of
every fiber, g %∈ N . Thus fix(π(g)) = C, since π(g) is an isometry of S2. It follows
that conditions (2) and (3) hold.

Now suppose that g′ = π(g) is a reflection of S2. Then fix(g′) lifts to a fibered
torus T in S3 such that g takes each fiber on T to itself and interchanges the fibers
in the two complementary solid tori. It follows that g reverses the orientation of the
circle of fibers making up T . Hence condition (1) holds. Furthermore, g2 pointwise
fixes each fiber of T . Thus, by Smith theory, order(g) = 2. Also since π(g) is a
reflection, g %∈ G+. So condition (4) holds.

Finally, suppose g %∈ G+ and order(g) = 2. By the Involution Condition, fix(g) ∼=
S1. Thus π(g) has non-empty fixed point set. Now since π(g) is an orientation
reversing isometry of S2, π(g) must be a reflection. So condition (4) holds.

Fact 2. Every element of G+ commutes with every element of N .

Proof. Let g ∈ G+. Then π(g) fixes two points; hence there are fibers k1 and k2

such that g(ki) = ki. By Fact 1, g preserves the orientation of each ki. Let h ∈ N .
Since h also preserves the orientation of each ki, ghg−1h−1|ki is the identity for
both i = 1 and i = 2. Hence it follows from Smith theory that ghg−1h−1 is the
identity.

Fact 3. Every involution in G+ pointwise fixes a fiber, and |N | is odd.

Proof. Let g ∈ G+ be an involution. By the Involution Condition, fix(g) ∼= S1.
Since g is fiber preserving, if l is a fiber which intersects fix(g) then either g fixes
two points of l or l = fix(g). If g fixes two points of l, then g reverses the orientation
of l, and hence g %∈ G+ by Fact 1. Thus fix(g) must be a fiber.

Finally, if N contains an involution g, then fix(g) would be an exceptional fiber.
Since the Hopf fibration has no exceptional fibers, |N | is odd.

Notation. Let T , O, and D denote the groups of orientation preserving sym-
metries of the regular tetrahedron, octahedron, and dodecahedron, respectively.

The finite subgroups of SO(3) are cyclic, dihedral, or isomorphic to T , O, or D.

Lemma 3. There exist fibers A and B, such that {A, B} is setwise invariant
under G. Furthermore, let J denote the subgroup of G which takes each of A and
B to itself, preserving the orientation of each. If G contains an involution which
interchanges A and B, then |J | is odd.
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Proof. If Gb is trivial, we can choose A and B to be any fibers. So we assume
that Gb is non-trivial. Now suppose that G+

b is trivial. Then Gb
∼= Z2 with some

generator γ. Let A and B be any pair of fibers which project to a pair of points
that are interchanged by γ. Since γ is the only non-trivial element of Gb, J = N .
Since |N | is odd by Fact 3, in this case we are done.

We may therefore assume that G+
b is non-trivial. We begin by showing that

there cannot be a pair of involutions f1 ∈ G+
b and f2 ∈ Gb and distinct points

{a1, b1, a2, b2} in S2 such that for i %= j, fi fixes ai and bi and interchanges aj

and bj.
Suppose that there is such a pair of involutions f1 and f2. Let A1, A2, B1 and

B2 be the fibers which project down to the points a1, a2, b1 and b2 respectively.
For each i, let gi ∈ G be such that π(gi) = fi. It follows from our conditions on
f1 and f2 that gi(Ai) = Ai, gi(Bi) = Bi, and for j %= i, gi interchanges Aj and Bj .
Let n = order(g1); then n is even since f1 is an involution. So we let h1 = (g1)n/2.
Since h1 is an involution and |N | is odd, h1 %∈ N . Since h1 ∈ G+−N , it follows that
A1 and B1 are the only fibers which are left setwise invariant by h1. In particular,
h1 interchanges A2 and B2. Also it follows from Fact 3 that fix(h1) is a fiber. So
without loss of generality, we can assume that fix(h1) = A1, and order(h1|B1) = 2.

Let α = (g2h1)2. Then α ∈ G+ and α(Ai) = Ai and α(Bi) = Bi for each i.
It follows that α ∈ N . Since fix(h1) = A1 and g2 interchanges A1 and B1, α|B1 =
h1|B1. It follows that order(α|B1) = 2, and hence α has even order. However, this
is a contradiction, since |N | is odd.

Thus the involutions f1 and f2 cannot both exist. Each of the groups T , O,
and D, as well as the dihedral group Dr where r is even, contains such a pair of
involutions. Hence either G+

b is cyclic or G+
b = Dr where r is odd. Thus we can

define Jb to be the largest cyclic subgroup of G+
b . Since we are assuming that G+

b
is non-trivial, Jb is non-trivial. Hence Jb fixes precisely two points x and y of S2,
and for every γ ∈ G+

b , γ ∈ Jb if and only if γ fixes x and y.
Let γ ∈ Gb. We will see as follows that γ({x, y}) = {x, y}. By hypothesis, there

is some α ∈ Jb which is non-trivial. Now γ−1αγ ∈ G+
b ; and either G+

b = Jb or
G+

b = Dr with r odd. If γ−1αγ %∈ Jb, then γ−1α2γ is the identity. Hence α has
order two. However, this is not possible since in this case Jb has odd order r. Thus
γ−1αγ ∈ Jb, and hence γ−1αγ fixes both x and y. This implies that α(γ(x)) = γ(x)
and α(γ(y)) = γ(y). However, since α is a non-trivial element of Jb, x and y are the
only points of S2 fixed by α; hence {γ(x), γ(y)} = {x, y}. Thus γ({x, y}) = {x, y}.
Now it follows that there is a simple closed curve C in S2 − {x, y} which is setwise
invariant under Gb.

Let A and B be the fibers that project to x and y. Then for every g ∈ G,
g({A, B}) = {A, B}. By definition J preserves the orientations of A and B. Hence
by Fact 1, no element of J projects to a reflection. For every β ∈ J , π(β) fixes
both x and y. Since π(β) has fixed points but is not a reflection, π(β) ∈ G+

b .
Thus π(β) ∈ Jb. Conversely, let β′ ∈ Jb and let β ∈ G such that π(β) = β′. Now
β(A) = A and β(B) = B. Furthermore, since β′ is not a reflection, by Fact 1,
β does not reverse the orientation of any fiber. Thus β ∈ J . It follows that
π(J) = Jb.

Finally, suppose there is some involution g ∈ G which interchanges A and B. Now
π(g) is an involution and π(g) interchanges x and y. Since π(g) leaves the simple
closed curve C setwise invariant, there is a pair {a, b} of antipodal points on C
which are fixed by π(g). If Jb contained an involution f1, then f1 would interchange
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a and b. However, we showed above that the pair of involutions f1 and π(g) cannot
both exist. Hence |Jb| is odd. Finally, since |N | is also odd, |J | must be odd.

We shall use the following notation which was introduced in the above proof.

Notation. Let A, B, and J be given by Lemma 3, let Jb = π(J), and let x
and y denote the projections of A and B. Let C denote a simple closed curve in
S2 − {x, y} which is setwise invariant under Gb.

Next we analyze the group J .

Lemma 4. The group J is cyclic or J = Zq × Zr with qr odd.

Proof. It follows from Fact 1 that Jb = π(J) is the subgroup of G+
b consisting

of those elements which fix both x and y. Hence Jb is cyclic. Let α be a generator
of the cyclic group N and let β ∈ J such that π(β) is a generator of Jb. Then α
and β generate J . Since J is a subgroup of G+, it follows from Fact 2 that α and
β commute. Thus J is abelian, and hence J = Zq × Zr , for some q and r.

Suppose J = Zq×Zr is not cyclic and qr is even. Then J contains an involution γ,
and by Fact 3, fix(γ) is a fiber. Since |N | is odd, γ %∈ N . Hence A and B are the only
fibers which are setwise invariant under γ. So without loss of generality, we assume
that fix(γ) = A. Now by the Involution Condition, no other non-trivial element of
G pointwise fixes A.

Suppose that δ ∈ J is also an involution and δ %= γ. Then fix(δ) %= A. Hence
by the above argument, fix(δ) = B and no other non-trivial element of G fixes
B pointwise. Now since J is abelian, γδ is also an involution, and thus again by
the above argument γδ pointwise fixes either A or B. As this is impossible by the
Involution Condition, we conclude that γ is the only involution in J .

Since J = Zq × Zr is not cyclic, gcd(q, r) %= 1. Now since qr is even, and J
contains only one involution, without loss of generality, q is odd and r is even.
Choose generators g1 and g2 for J such that order(g1) = q, order(g2) = r, and the
subgroups generated by g1 and g2 have trivial intersection. By definition of J , A
is setwise invariant under both g1 and g2. Now γ = gr/2

2 . Since γ is the only non-
trivial element of G that pointwise fixes A, order(g1|A) = q and order(g2|A) = r/2.
Also since gcd(q, r) %= 1, there exists an odd prime p dividing both q and r/2. Let
i = q/p, then order(gi

1|A) = p. Let j = r/2p, then order(gj
2|A) = p. It follows that

for some k < p, gik
1 |A = gj

2|A. However, gik
1 %= gj

2, since the groups generated by
g1 and g2 have trivial intersection. Thus order(gik

1 g−j
2 ) = p. Now since gik

1 g−j
2 is a

non-trivial element of G which pointwise fixes A, gik
1 g−j

2 must be the involution γ.
However, this is impossible since p is an odd prime. Thus, if J is not cyclic, then
qr is odd.

Lemma 5. If G %= J , then we can choose an involution φ1 which interchanges
A and B and/or an involution φ2 which reverses the orientation of A and B such
that the following four conditions hold.

(1) G is generated by J together with whichever of φ1 and φ2 exists.
(2) If both φ1 and φ2 exist, then they commute.
(3) If φ2 exists, then for every g ∈ J , φ2gφ2 = g−1.
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(4) If φ1 exists, then we can choose generators g1 and g2 for J such that φ1g1φ1 =
g−1
1 and φ1g2φ1 = g2.

Proof. Since G %= J , either G contains an element φ which interchanges A and
B, or G contains an element ψ which reverses the orientation of both A and B.

Suppose that G contains an element φ which interchanges A and B. Let φ1 denote
φ to an appropriate odd power so that order(φ1) = 2n. Then φ1 interchanges A
and B. Suppose that n > 1. Let α = (φ1)2

n−1
. Then α ∈ J and order(α) = 2. By

Fact 3, fix(α) is a fiber and |N | is odd. Thus α %∈ N . It follows that A and B are the
only fibers which are setwise invariant under α. So, without loss of generality we
can assume fix(α) = A. Since φ1 interchanges A and B, φ1αφ

−1
1 |B is the identity.

However, φ1αφ
−1
1 = α, because α = (φ1)2

n−1
. By Smith theory, α cannot pointwise

fix both A and B. Thus n = 1, and φ1 is an involution.
If G contains an element ψ which reverses the orientation of both A and B, then

by Fact 1, ψ %∈ G+ and ψ is an involution. So let φ2 = ψ. Now G is generated by J
together with whichever of φ1 and φ2 exists. Hence we have proved property (1).

To prove property (2), suppose that G contains an involution φ which inter-
changes A and B and an involution φ2 which reverses the orientation of both A
and B. By Fact 1, φ2 %∈ G+. In this case, we choose φ1 as follows. If φ %∈ G+, let
φ1 = φ. Otherwise, let ψ1 = φφ2. Then ψ1 %∈ G+ and ψ1 interchanges A and B.
Now let φ1 denote ψ1 to an appropriate odd power so that order(φ1) = 2n. Then
φ1 %∈ G+ and φ1 interchanges A and B. Also as we saw in the proof of property (1),
φ1 is an involution.

We see that the involutions φ1 and φ2 commute as follows. Since φ1 %∈ G+ and
φ2 %∈ G+, by Fact 1, π(φ1) and π(φ2) are both reflections about great circles. These
two great circles intersect in a pair of points p and q which are fixed by both π(φ1)
and π(φ2). Let P and Q be the fibers projecting down to p and q respectively. Since
φ1 and φ2 are involutions leaving each of P and Q setwise invariant, φ1φ2φ1φ2

pointwise fixes both P and Q. Hence by Smith theory φ1 and φ2 commute, and
thus we have proved property (2).

To prove property (3), suppose the involution φ2 exists. Now observe that since
φ2 reverses the orientation of A and B, for every g ∈ J , φ2gφ2g fixes both A and
B pointwise. Hence by Smith theory, for every g ∈ J , φ2gφ2 = g−1.

Finally, to prove property (4) we suppose that the involution φ1 exists. Thus by
Lemma 3, |J | is odd and hence |Jb| is odd. In order to choose appropriate generators
for J , we start with a generator α of N and some β ∈ J such that π(β) is a generator
for Jb. Observe that π(β)2 is also a generator of Jb, since |Jb| is odd.

Case 1: φ1 ∈ G+. Since the simple closed curve C is setwise invariant under
Gb and no non-trivial element of G+

b pointwise fixes C, G+
b induces an isomorphic

group action on C. Since π(φ1) ∈ G+
b interchanges x and y, π(φ1) reverses the

orientation of C. Also since π(β) generates Jb, π(β) preserves the orientation
of C. Thus π(φ1β−1φ1) = π(β). Let g1 = βφ1β−1φ1. Then π(g1) = π(β)2 since
π(φ1β−1φ1) = π(β). Let g2 = α. Since π(β)2 is a generator for Jb, g1 and g2

generate J . Now φ1g1φ1 = φ1(βφ1β−1φ1)φ1 = φ1βφ1β−1 = g−1
1 . Also by Fact 2,

φ1g2φ1 = g2.

Case 2: φ1 %∈ G+. Since φ1 is an involution, π(φ1) is a reflection by Fact 1. Now
since π(φ1) interchanges x and y, fix(π(φ1)) = C. Also π(βφ1β−1φ1) ∈ G+

b and fixes
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C pointwise. It follows that π(βφ1β−1φ1) is the identity and hence π(φ1) and π(β)
commute. Let g2 = βφ1βφ1. Then π(g2) = π(β)2 is a generator of Jb. Let g1 = α.
Then g1 and g2 generate J . Now φ1g2φ1 = φ1(βφ1βφ1)φ1 = (φ1βφ1)β = β(φ1βφ1),
since β and φ1βφ1 are both elements of J which is abelian by Lemma 4. Thus
φ1g2φ1 = g2. Since π(φ1) is a reflection, by Fact 1, there are fibers P and Q which
are reversed by φ1. Then φ1g1φ1g1|P and φ1g1φ1g1|Q are the identity, since g1 ∈ N .
By Smith theory, φ1g1φ1 = g−1

1 , and we have proved property (4).

We make the following observation which we will use throughout the proof of
Proposition 2. Let G1 be the group generated by J together with an involution φ1

which interchanges A and B (if such an involution exists), and let G2 be the group
generated by J together with an involution φ2 which reverses the orientation of both
A and B (if such an involution exists). Let Ti be the group generated by φi. Then
Ti

∼= Z2 and the intersection of Ti and J is trivial. Also for every j ∈ J , φijφi ∈ J ,
and hence J is normal in Gi. Now φij = (φijφi)φi ∈ JTi, and hence Gi = JTi. It
follows that, for each i, Gi = J !Ψi Z2, where Ψi acts on J by conjugation by φi.

Proposition 2. Let G be a finite subgroup of SO(4) which satisfies the Invo-
lution Condition and preserves a standard Hopf fibration of S3. Then G is either
cyclic, dihedral, or a subgroup of Dm × Dm for some odd number m.

Proof. If G = J , then by Lemma 4, G is either cyclic or Zq × Zr where qr is
odd, and the result is evident. So we assume G %= J . Then G is generated by J
together with the involution(s) φ1 and/or φ2 given by Lemma 5.

Case 1: φ1 exists. It follows from Lemma 3 that |J | is odd. Let G1 be the
subgroup generated by J and φ1. Then G1 = J !Ψ1 Z2, where Ψ1 acts on J by
conjugation by φ1. Now let g1 and g2 be the generators for J given by condition
(4) of Lemma 5. Thus φ1g1φ1 = g−1

1 and φ1g2φ1 = g2. Let q = order(g1) and
r = order(g2), so that G1 = Dq × Zr and qr is odd. Furthermore, if φ2 exists then
by Lemma 5, G is generated by J together with φ1 and φ2, φ2giφ2 = g−1

i and φ1

and φ2 commute. Hence (φ1φ2)g1(φ1φ2) = g1, (φ1φ2)g2(φ1φ2) = g−1
2 , and φ1φ2 is

an involution. This implies that G = Dq ×Dr, with generators g1, g2, φ1, and φ1φ2.
Thus, whether or not φ2 exists, G is a subgroup of Dm ×Dm where m = qr is odd.

Case 2: φ1 does not exist. Since G %= J , G is generated by J together with the
involution φ2. By Lemma 5, for every g ∈ J , φ2gφ2 = g−1. Also, G = J !Ψ2 Z2,
where Ψ2 acts on J by conjugation by φ2. If J is cyclic, it follows that G is dihedral.
Otherwise, J = Zq ×Zr and qr is odd by Lemma 4. It follows that G is a subgroup
of Dq ×Dr. Hence as in Case 1, G is a subgroup of Dm ×Dm where m = qr is odd.

Finally, we consider finite subgroups of SO(4) which satisfy the Involution
Condition and do not preserve a standard Hopf fibration of S3.

Proposition 3. Let G be a finite subgroup of SO(4) which satisfies the Invo-
lution Condition and does not preserve a standard Hopf fibration of S3. Then G is
isomorphic to either T , O, or D.
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Proof. Let ρ : SO(4) → SO(3) × SO(3) be the canonical two-to-one homo-
morphism. Now ρ|G is either one-to-one or two-to-one. If ρ|G is two-to-one, then G
contains the antipodal map, which is a fixed point free involution of S3.
As this would violate the Involution Condition, ρ|G must be one-to-one, and hence
ρ(G) ∼= G.

Dunbar [4] shows that, if G is a finite subgroup of SO(4) which does not preserve a
standard Hopf fibration of S3, then ρ(G) is conjugate to one of 16 explicit subgroups
of SO(3)×SO(3) which he lists. Furthermore, he shows that if ρ(G) ∼= G, then G is
conjugate to one of only five of these subgroups, each of which is isomorphic to one
of the groups T , O, or D. Hence the proposition follows from Dunbar’s result.

4. Realizability of groups by embeddings of complete graphs

We would like to show that each of the groups listed in Propositions 2 and 3 is
realizable by some embedding of a complete graph. We will use the following result
from [6] which gives conditions under which a subgroup of a realizable group is also
realizable by a different embedding of the underlying graph.

Lemma 6 [6]. Let Γ be an embedded 3-connected graph. Let H be a subgroup
of TSG+(Γ) which is induced by an isomorphic subgroup G of Diff+(S3), and no
non-trivial element of H fixes any vertex of Γ. Then Γ can be re-embedded as Ω
such that H = TSG+(Ω) and H is still induced by G.

Let γ be a graph and let J ! Aut(γ). If there is an element of J which inter-
changes the vertices of some edge e, then we will say that e is invertible under J .
We define the graph γ′ associated with γ and J to be the graph obtained from γ
by adding a vertex in the interior of every edge which is invertible under J . Every
automorphism of γ uniquely determines an automorphism of γ′. Thus we shall
abuse notation slightly by treating J as a subgroup of both Aut(γ) and Aut(γ′).
Note that no edge of γ′ is invertible under J .

Realizability Lemma. Let γ be a 3-connected graph, and let H ! Aut(γ)
be such that no non-trivial element of H fixes any vertex of γ. Suppose that H is
isomorphic to a subgroup G of Diff+(S3) which satisfies the Involution Condition.
Then there is an embedding Γ of γ such that H = TSG+(Γ) and H is induced
by G.

Proof. Let Y denote the union of the fixed point sets of all the non-trivial
elements of G. Since G is a finite subgroup of Diff+(S3), Y is a union of finitely
many simple closed curves whose pairwise intersection consists of finitely many
points.

Let Ψ : H → G be an isomorphism and, for each a ∈ H , define ga = Ψ(a).
Let {w1, . . . , wq} be a set consisting of one representative from each vertex orbit of
γ under H . Let v1, . . . , vq be distinct points in S3 − Y which have disjoint orbits
under G. For each i ! q, we embed the vertex wi as the point vi.

We embed an arbitrary vertex w of γ as follows. Since no vertex of γ is fixed
by any non-trivial element of H , there is a unique a ∈ H and i ! q such that
w = a(wi). Thus every w determines a unique point ga(vi) in S3 −Y . So we embed
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w as ga(vi). Let V denote the set of thus embedded vertices; then G leaves V setwise
invariant. Since v1, . . . , vq are in S3 −Y and have disjoint orbits under G, all of the
vertices of γ are embedded as distinct points.

Let {a1, . . . , ar} consist of one representative from each conjugacy class of the
involutions in H . Now for each i, let {εi1, . . . , εiri} be a (possibly empty) set
consisting of one representative from each orbit of those edges of γ which are
inverted by ai. Since no vertex of γ is fixed by any non-trivial element of H , a
given εij is not setwise invariant under any non-trivial element of H other than ai.
Thus, εij and εkl have disjoint orbits unless both i = k and j = l. Now since G
satisfies the Involution Condition, for each ai, fix(gai) is a simple closed curve which
is not fixed by any other non-trivial element of G. Thus, if i %= j, then fix(gai) is
not in the orbit of fix(gaj ), since gai and gaj are in distinct conjugacy classes of G.

For each ai, we can choose a set of distinct points {zi1, . . . , ziri} ⊂ fix(gai) whose
orbits are disjoint and none of which is fixed by any non-trivial element of G other
than gai . Thus, zij and zkl have disjoint orbits unless both i = k and j = l.

Let γ′ denote the graph associated with γ and H . We will find an embedding
Γ′ of γ′ such that H = TSG+(Γ′) and H is induced by G. Let v be a vertex of γ′
which is not a vertex of γ. Then v is on some invertible edge ε of γ, which is in
the orbit of a unique εij . Thus ε = a(εij) for some a ∈ H . Suppose that for some
b ∈ H , ε = b(εij), then either a = b or a−1b inverts εij . In the latter case, ga−1b

fixes zij , and hence ga(zij) = gb(zij). Thus we can unambiguously embed v as the
point ga(zij). Let V ′ denote V together with the above embeddings of the vertices
of γ′ − γ. Then V ′ is setwise invariant under G.

Suppose that there are vertices of γ′ − γ on the edges ε and δ which are both
embedded as the same point of S3. Now ε = a(εij) for some i and j, and δ = b(εkl)
for some k and l, and ga(zij) = gb(zkl). Thus i = k and j = l, and hence ga−1b fixes
zij . It follows that a−1b = ai, and hence a−1b(εij) = εij . Thus ε = a(εij) = b(εkl) =
δ. Hence we have shown that distinct vertices of γ′ − γ are embedded as distinct
points of S3. Now V ′ is an embedding of the vertices of γ′, and G induces H on V ′.

Next we will embed the edges of γ′. Let {e1, . . . , en} be a set consisting of one
representative from each orbit of the edges of γ′ under H , and let xi and yi be the
embedded vertices of ei. For each i, let αi be a path in S3 from xi to yi whose
interior is disjoint from V ′ ∪ Y . Let π : S3 → S3/G denote the quotient map.
Then π|(S3 − Y ) is a covering map, and the quotient space Q = (S3 − Y )/G is
a 3-manifold. For each i, let α′

i = π ◦ αi. Then α′
i is a path or loop from π(xi)

to π(yi) whose interior is in Q. Using general position in Q, we can homotop each
α′

i fixing its endpoints to a simple path or loop ρ′i such that the interiors of the
ρ′i(I) are pairwise disjoint, and are each disjoint from π(V ′ ∪ Y ). Now for each i,
we can lift ρ′i to a path ρi beginning at xi such that int(ρi) is disjoint from V ′ ∪ Y .
Since ρ′i = π ◦ ρi is one-to-one except possibly on the set {0, 1}, ρi must also be
one-to-one except possibly on the set {0, 1}. Also since ρ′i is homotopic relative to
its endpoints to α′

i, ρi is homotopic relative to its endpoints to αi. In particular, ρi

is a simple path from xi to yi.
We embed each ei as ρi(I). We embed an arbitrary edge e of γ′ as follows. Since

no edge of γ′ is setwise invariant under any non-trivial element of H , there is a
unique a ∈ H and a unique i ! n such that e = a(ei). Hence e determines
a unique arc ga(ρi(I)) between ga(xi) and ga(yi). So we embed e as ε = ga(ρi(I)).
Let E′ denote the set of thus embedded edges of γ′. Then G leaves E′ setwise
invariant.
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Let Γ′ consist of the vertices V ′ together with the embedded edges E′. Then Γ′

is setwise invariant under G. We see that Γ′ is an embedded graph as follows. First,
since each int(ρ′i(I)) is disjoint from π(V ′), each embedded edge must be disjoint
from V ′. Similarly, since for i %= j, ρ′i(I) and ρ′j(I) have disjoint interiors, for every
g, h ∈ G, g(ρi(I)) and h(ρj(I)) have disjoint interiors. Finally, since ρ′i is a simple
path or loop whose interior is disjoint from π(Y ), if g %=h, then g(ρi(I)) and h(ρi(I))
have disjoint interiors.

Hence Γ′ is an embedded graph with underlying abstract graph γ′ such that
G induces H on Γ′. Let Γ be the embedded graph obtained from Γ′ by omitting
those vertices of V ′ which are not in V . Then Γ has underlying abstract graph γ
and G induces H on Γ. Now by Lemma 6, Γ can be re-embedded as Ω such that
H = TSG+(Ω) and H is still induced by G.

In the next two propositions, we use the Realizability Lemma to obtain our
desired embeddings.

Proposition 4. Let H be a group which is cyclic, dihedral, or a subgroup of
Dm×Dm for some odd number m. Then there is an embedding Γ of some complete
graph such that H = TSG+(Γ) and H is induced by an isomorphic subgroup of
SO(4).

Proof.
Case 1: H is a subgroup of Dm, where m is even. Let F1∪F2 be a Hopf link with

components F1 and F2. Let g be a glide rotation of S3 of order m which rotates
about F1 by 4π/m while rotating about F2 by 2π/m. Let f be a rotation by π
around a circle which intersects each of F1 and F2 orthogonally in two points. Thus
f(Fi) = Fi for each i. Now let G be the subgroup of SO(4) generated by g and f .
It is not hard to check that G ∼= Dm.

Observe that every involution in G other than gm/2 has the form gif for some
non-negative i < m. Furthermore, fix(gm/2) = F2, and for each i < m, fix(gif) is a
circle which intersects F1 orthogonally in a distinct pair of points. Also, for every
non-trivial g ∈ G, fix(g) is non-empty if and only if g is an involution. It follows
that G satisfies the Involution Condition.

We will find an embedding of K2m in S3 such that TSG+(Γ) = H . Observe that
Aut(K2m) has a subgroup J ∼= Dm such that no non-trivial element of J fixes
any vertex of K2m. Since H ! J , we can apply the Realizability Lemma to H to
conclude that there is an embedding Γ of K2m such that H = TSG+(Γ) and H is
induced by an isomorphic subgroup of G.

Case 2: H is a subgroup of Dm × Dm where m is odd. Consider a torus T in
S3 which bounds two isometric solid tori. Let φ denote the glide rotation of S3

which rotates each (1, 1) curve on T along itself by 2π/m, and let ψ denote the
glide rotation which rotates each (−1, 1) curve on T along itself by 2π/m. Let f
be a rotation by π about a particular (1, 1) curve X and let g be a rotation by π
about a particular (−1, 1) curve Y . Let G be the subgroup of SO(4) generated by
φ, ψ, f and g.

The following two observations are not hard to show:
(1) φψ = ψϕ, fg = gf , fφ = φf , and gψ = ψg;
(2) fψf = ψ−1 and gφg = φ−1.
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Using these observations we can show that G = Dm×Dm. In fact, G is the image
in SO(4) of the subgroup of S3 × S3 generated by (e2πi/m, 1), (1, e2πj/m), (i,−i),
(j,−j). Furthermore, since m is odd, every involution in G has the form ψjf , φig,
or φiψjfg for some i, j < m. Now for each i and j, fix(ψjf) is a distinct (1, 1)
curve on T , fix(φig) is a distinct (−1, 1) curve on T , and fix(φiψjfg) is a distinct
circle which meets T orthogonally in four points. Also, for every non-trivial α ∈ G,
fix(α) is non-empty if and only if α is an involution. It follows that G satisfies the
Involution Condition.

We will find an embedding Γ of K4m2 in S3 such that TSG+(Γ) = H . Observe
that Aut(K4m2) has a subgroup J ∼= Dm ×Dm such that no non-trivial element of
J fixes any vertex of K4m2 . Since H ! J , we can apply the Realizability Lemma to
H to conclude that there is an embedding Γ of K4m2 such that H = TSG+(Γ) and
H is induced by an isomorphic subgroup of G.

Proposition 5. Let H be one of the groups T , O, or D. Then there is an
embedding Γ of some complete graph such that H = TSG+(Γ) and H is induced
by an isomorphic subgroup of SO(4).

Proof. First let Λ be the 1-skeleton of a 4-simplex symmetrically embedded in
R4 with the origin at its center; and let Γ be the radial projection of Λ to S3. Then
Γ is an embedding of K5 in S3. Let G denote the group of orientation preserving
isometries of Λ in R4. It is not hard to show that G is isomorphic to the alternating
group A5. Since G induces an isomorphic action on (S3,Γ), then TSG+(Γ) ∼= A5.
It is well known that A5 is isomorphic to the dodecahedral group D.

Next we consider the octahedral group O. Below we define a subgroup G of SO(4)
which is isomorphic to O, but which is not the group of symmetries of a regular
octahedron or cube. We begin by radially projecting a cube centered at the origin in
S3 to a 2-complex C which is contained in the unit 2-sphere. Let f be the rotation
by 2π/3 about an axis which runs through a pair of antipodal vertices of C. Let S
be the square a ∪ d ∪ b ∪ e where a is a diagonal of one face of C, b is the parallel
diagonal of the opposite face of C, and d and e are the edges of C which connect
the endpoints of a and b. Let g be the rotation by π about S. Finally, let h be the
glide rotation which rotates by π/2 about an axis X going through the center of
two opposite faces of C, while rotating about a disjoint equator of C by π. We can
choose f , g, and h so that ghf is the identity (see Figure 1). Let G be the subgroup
of SO(4) which is generated by f , g, and h. By inspection, we see that the group G
has 24 elements and every non-trivial element of G has order either 2, 3, or 4 and
is conjugate to g, f , or h respectively. It is not hard to check that G ∼= O.

We consider the fixed point sets of the elements of G as follows. Let α ∈ G. If α
is an involution, then either fix(α) is a circle which meets C in the centers of two
opposite faces, or fix(α) is a square made up of two parallel diagonals on opposite
faces of C together with two edges connecting the endpoints of these diagonals. If
α has order 3, then fix(α) is an axis which runs through antipodal vertices. Finally,
if α has order 4, then fix(α) is empty. It follows from these observations that G
satisfies the Involution Condition.

We will find an embedding Γ of K24 such that TSG+(Γ) = O. Observe that
Aut(K24) has a subgroup H = O such that no non-trivial element of H fixes any
vertex of K24. Thus we can apply the Realizability Lemma to get an embedding
Γ of K24 such that H = O = TSG+(Γ), and H is induced by G. Furthermore,
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f
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h

Figure 1. The generators of G.

since T ! O, the Realizability Lemma also gives us an embedding Γ of K24 such
that T = TSG+(Γ), and T is induced by an isomorphic subgroup of G.

5. Conclusion

We will now put together our five propositions to complete our characterization
of those groups which are TSG+(Γ) for some embedding Γ of a complete graph.

Theorem 1. A finite group H is TSG+(Γ) for an embedding Γ of some complete
graph if and only if H is isomorphic to a finite subgroup of either SO(3) or Dm×Dm

for some odd m.

Proof. Recall that the finite subgroups of SO(3) are precisely the finite cyclic
groups, the dihedral groups, and T , O, and D.

Suppose that there is an embedding Γ of some Kn with H = TSG+(Γ). By
Proposition 1, either H is cyclic of odd order or there exists an embedding Γ′ of
Kn such that H is induced on Γ′ by an isomorphic subgroup G of SO(4). If H is
cyclic we are done. So we assume that H is induced by an isomorphic subgroup G
of SO(4). Then, by Lemma 2, G satisfies the Involution Condition. If G preserves
a standard Hopf fibration of S3, then by Proposition 2, G is either cyclic, dihedral,
or a subgroup of Dm × Dm for some odd number m. So in this case we are done.
On the other hand, if G does not preserve a standard Hopf fibration of S3, then by
Proposition 3, G is isomorphic to T , O, or D. So again we are done.

In order to prove the converse, first suppose that H is cyclic, dihedral, or a
subgroup of Dm × Dm, for some odd number m. Then by Proposition 4, there is
an embedding Γ of some Kn such that H = TSG+(Γ). On the other hand, if H is
T , O, or D, then by Proposition 5, there is an embedding Γ of some Kn such that
H = TSG+(Γ).

Finally, observe that the following result follows immediately from Theorem 1
together with Propositions 4 and 5.
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Corollary 1. Let Ω be an embedding of some complete graph with H =
TSG+(Ω). Then there exists an embedding Γ of some (possibly different) complete
graph such that H = TSG+(Γ) and H is induced by an isomorphic subgroup of
SO(4).
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