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Abstract

In this study the problems with the current stock ranking sys-
tem commonly used by portfolio managers, the Z-score, are examined.
Metrics are proposed to measure the efficacy of different ranking sys-
tems, and then alternative ranking systems are developed. The sys-
tems are tested on the metrics and the results presented. Further, the
mathematical qualities of the ranking systems and their relationships
with each other are explored in various degrees of depth.

To Sage, who was always there with energy and a bark when the stress
of Thesis weighed us down.
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1 Introduction

Predicting the stock market has long been a dream of bankrupt men and
failed financiers. Most academics consider the market to be a random walk
with drift, use a 100 year average of returns for the drift, and advise:“good
luck with the random walk.” However, this will not stop leagues of portfolio
managers and investment professionals from attempting to outperform each
other and the indices.

Most recently, quantitative investment management has attempted to
create equity portfolios based entirely on mathematical models. One of the
most commonly used systems for ranking stocks, the Z-score, is partly re-
sponsible for managing billions and likely hundreds of billions of dollars in
capital. Hence the motivation for improving such a ranking system to cre-
ate more accurate results is incredibly high and the the motivation for our
study.

2 Background

Over the past few decades, computers have changed the way financial analysts
look at the markets. Computers have allowed vast amounts of computations
to be done, paving the way for quantitative analysis. The largest area in
quantitative finance has been in quantitative equity portfolio management.
This is the result of equities being both a very common and a very dynamic
investment area.

Although quantitative investment management is generally a new field
in finance, there are some accepted practices that have been developed for
quantitatively ranking stocks. First, there must be quantitative data that
one is analyzing. Fortunately, stocks have a vast amount of readily available
quantitative data, such as price, one year return, various items from the
financial statements, and binary variables ( such as, did the CEO go to a
liberal arts school?, or has the company had an initial public offering in the
past 5 years?). We will refer to these quantitative pieces of data as Stock
Factors.

Stock Factor A factor is a quantitative measurement of some aspect of a
company’s stock. Examples of factors are Price-to-Book ratio, 3 Month
Return (or 3 Month Momentum), and Number of Analysts covering the
stock.
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2.1 Stock Factors used in this study

We will use six different stock factors in our analysis. All six factors were
found to be statistically significant in determining returns of stock prices in
various studies and are commonly used by portfolio managers1.

Price-to-Book ratio, or PB-ratio, is equal to:

PB =
MarketCapitalization

BookV alue
(2.1)

Market Capitalization is the current price of the company, i.e. the price
at which a prospective buyer could purchase the company. The Book Value
is the amount that the equity is worth according to the balance sheet in the
company’s financial statements. This is one of, if not the, most commonly
used factors in stock analysis. Historically, a low PB corresponds to higher
returns, since you are buying equity in the company at a cheaper price relative
to its valuation based on Generally Accepted Accounting Principles (GAAP).

Our second fundamental factor, Price-to-Earnings (P/E) ratio to histori-
cal earnings growth,or PEGH, is the P/E ratio divided by the 5-year earnings
growth of the company. Historically, a lower PEGH leads to higher returns.

PEGH =
MarketCapitalization

NetIncome

5Y earEarningsGrowthRate
(2.2)

Another factor, related significantly to PB, is the Size of the company.
It is given simply by Size = MarketCapitalization, where Market Capital-
ization is defined as before.

Our fourth and only technical factor (a technical factor is one which only
looks at past price movements of the stock), Three Month Momentum, is
the previous 3-month return of the stock. Previous returns is one of the
most commonly used factors amongst all technical factors. Three Month
Momentum (M3M) is given by:

M3Mt =
Pt +DIV

Pt−3

(2.3)

Where Pt is the current price of the stock (at time t ), Pt−3 is the price 3
months ago (at time t− 3), and DIV are the amount of dividends paid out
for the stock over the past 3 months.

1Chincharini and Kim, 121
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We will also include two alternative factors (not commonly used by port-
folio managers). The first is EPSFN , which is the number of financial
analysts covering the stock and predicting what a company’s earnings per
share will be.

The second alternative factor is RECC, or Net Change in Analyst Rec-
ommendations. It is given by:

RECC =
Upgrades−Downgrades

EPSFN
(2.4)

Where Upgrades is the number of analysts who have upgraded the stock
in the past month, and Downgrades is the number of analysts who have
downgraded the stock in the past month. EPSFN (defined above) is the
total number of analysts covering the stock.

2.2 Introducing the Z-Score

Given all of the quantitative data and different stock factors, an investor
will want some way of combining the data systematically to rank various
stocks. A traditional approach to combining data is to normalize it first.
The current most commonly used method for normalizing the data is the
Original Z-Score.

Original Z-Score for factor j and stock i

Z1,i,j =
Xi,j +Xj

Sj
(2.5)

Z1,i,j represents the original Z-score for factor j and stock i. Xj is the
arithmetic mean of the factor over every stock, Sj is the standard deviation
of the factor over every stock, and Xi,j denotes the actual factor value for
stock j. That is, if stock i has a P/B ratio of 7, then Xi,PB = 7.

In an ideal world,the factors would be distributed normally, and one could
say that a Z-score of 2 for stock j implies that it is in the top 2.27% of all
stocks. Unfortunately, many factors are non-normal so so we stray away
making statements relating the factor Z-score of a stock and its factor per-
centile.
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2.3 The Original Overall Z-Score, Z1

When building a portfolio of stocks a portfolio manager first computes Z-
scores for each factor for every stock. Then, he chooses to combine the
Z-scores in some way. The Original Z-Score Method described in equation
3.1 “normalizes” each factor so that different Z-scores can be arithmetically
summed in a meaningful way. After ranking the stocks the portfolio manager
can buy the best stocks and short the worst ones using various methods.
Further, the rankings can be combined with qualitative analysis to decide
which stocks to hold.

I should reiterate, a flaw in this idea is that the factors are distributed
relatively normally, which they are not; showing the problems with the cur-
rent Z-score method and providing a solution will be a main tenet of this
paper.

Consider m different factors with weights k1, ..., km for these factors such
that

m∑
j=1

|kj| = 1 (2.6)

Note that some of the weights kj will be negative and some will be pos-
itive. For example, for the factor Price-to-Book ratio, a portfolio manager
may prefer low Price-to-Book ratio to high ones, and therefore he reverses
the P/B Z-score distribution by making kPB < 0. Low P/B stocks should
have higher Z-scores, and high P/B stocks have lower Z-scores.

An overall Z-score for stock i is given by:

Z1,i =
m∑
j=1

kjZi,j (2.7)

The Z-score serves first as a ranking of the stocks from best to worst.
Further, it ranks the stocks comparably to each other. That is, a stock with
with a Z-score of 3 has not only a higher rank than a stock with a Z-score of
1, it is a much, much better stock.

Additionally, a portfolio manager can create a portfolio from the Z-scores
by weighting stocks by their Z-scores. However, often portfolio managers use
other econometric techniques for weighting stocks and coming up with an
actual portfolio.
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3 The Problems with Z1

If the factors that the portfolio manager is looking at are distributed nor-
mally, there will be few, if any problems with using Z1. Unfortunately, many
very useful factors are not normal, and some are extremely non-normal. As
a further issue, some important factors are binary which creates problems in
using Z1 as a ranking system.

Before delving further and showing histograms of the factors, we should
say something about the data. The data for our study is from 1994 to
2006, taken monthly. The stocks we include are from the S&P 1500. It was
originally created and used in Pomona College’s Spring 2008 Quantitative
Investment Management class, taught by Professor Ludwig Chincarini.

3.1 The Percentile Rank Problem

One of the first issues that arises from Z1 is what will be referred to as
the percentile rank problem. The problem is that one would think, in most
ranking systems, that a stock that ranks in the first quartile for two factors
and the third quartile for one factor would rank higher than a stock that
ranks in the first quartile for only one factor and the third quartile for two
factors, assuming all factors are to be equally weighted. Because of skewed
data and huge outliers, the internal consistency does not always hold. Figures
1,2,3, and 4 show the four histograms of four factors: Price to Book Ratio, 3
Month Momentum, Market Capitalization (Size), and Net Change in Analyst
Recommendations.

First, it should be divulged that the x-axes on the Figures for PB, Size,
and M3M were constrained to what is shown. All three had a good chunk of
outliers, although PB had comparatively more outliers and was the only fac-
tor with negative outliers. Size and M3M are constrained to being positive
by their definition.

As you can see from Figures 1,2,3 and 4, the distributions for each fac-
tor are all very different. M3M is reasonably symmetric and bell shaped,
whereas size and PB are very skewed. Additionally, size has only positive
values, whereas PB has almost all positive values, with a huge drop off at
zero and large negative and positive outliers. RECC is unique in its own
way, with a vast majority of the data equal to zero and a range of [-1,1].

To illustrate the percentile ranking issue let’s compute Z1 for three factors,
equally weighted; in this case pick PB, M3M , and Size to be our factors.
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Figure 2: Histogram of size
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Suppose stock A is in third quartile for PB and Size and the first quartile
for M3M , and suppose stock B is in the 1st quartile for the first two factors,
and the third quartile for the third factor.

Stock A’s Z-scores: -.025, -.11, and -.52. Average = -.29
Stock B’s Z-scores: -.05, -.29, and .6. Average = .09
The reason for this in the above case is that M3M is a very normal

distribution, so it has a standard deviation of .22 and mean of 1.03, resulting
in the 75th percentile falling .6 standard deviations away from the mean.
PB, on the other hand, has a standard deviation of 88 and mean of 4.7 yet
almost all the data lies between 0 and 20; the huge standard deviation is the
result of ridiculous outliers. Hence the 75th percentile for PB actually has a
negative Z-score that is tiny in absolute terms (its score is -.025 versus .6 for
a stock of the same percentile for M3M); the same reasoning also applies to
Size.

When averaged, the third distribution skews the result because it has
so much weight: the third quartile for M3M is .6, whereas it is tiny (even
negative) for PB and Size leading to a positive Z-score (.09) when we wanted
it to be negative. We would have expected A’s and B’s Z-score to be of
different signs: A’s positive and B’s negative. Most importantly, we would
have wanted A to be ranked higher than B.

The above regularities summarize the percentile rank problem of Z1.

3.2 The Qualitative Ranking Problem

There is an additional problem with Z1, though this one is both harder to
quantify and likely impossible to solve completely. Ideally, we would want
a ranking system with some type of meaning, not only to the ranks (i.e. a
stock with score 1 is better than a stock with score 0), but also some relative
ranking (i.e. how much better is a stock of rank 1 than a stock of rank 0.

To illustrate this problem, let’s only look at one factor PB, and assume
that it is the only factor. As one can see from Figure 1, almost all of the
data falls between -5 and 20, yet the standard deviation is 88. The result is
that almost all the stocks for the factor Z-score under Z1 fall between 0 and
-.1, telling little about the differences between the relative companies. If the
Z-score is not between 0 and -.1, then it is an outlier, and that is about all
the information revealed.

In this situation, a portfolio manager would want to differentiate between
a stock with PB of 2 and a PB of 8; one stock is valued at 4 times more of
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its book value, which is a huge difference. According to our system, however,
it is the difference between a Z-score of -.028 and .086, which qualitatively
means nothing (particularly when averaged with our other factors).

Ideally we want our ranking system to have some qualitative meaning in
addition to its strict rank. Our current system fails miserably in this regard.

3.3 The Return Problem

An additional problem with Z1 is how little it explains of actual returns.
To show this problem, I first need to introduce the weights used by Z1. As

I discussed earlier, the weights can be at the portfolio managers’ discretion,
and it is important that the factor Z-scores are compiled in a way to create a
relevant Z-score. For example, if PB has a negative relationship with returns,
PB should be weighted negatively. Further, to avoid complicating the issue,
we will use equal magnitude weights for all six factors in this segment. To
determine whether factors were related positively or negatively with returns
we regress each factor against returns and obtain the following results:

Six Factors Against Returns
T − V alue

M3M −9.8
RECC 2.7
EPSFN −7.0
Size −2.5
PB 1.1

PEGH −2.4
Adjusted−R2 .0026

Fortunately all of our factors except PB are statistically significant, so
we have chosen factors that are good to study because of their economic
implications. Additionally, based on the sign, we know which factors to
weight negatively and which to weight positively. RECC is positive while
the rest of the factors are negative. It should be noted that, arguably, we
want the sign of the regressions done for each factor individually, not taken
all at the same time. Doing a multi-variable regression relates the factors to
each other and the response variable (returns), instead of looking at only the
effect of the factor (not controlling for anything else).

After completing the individual regressions, none of the signs changed,
except the one for PB, which turned negative; this result, multi-collinearity,
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implies some of the other factors are both correlated with PB and explain
returns. This is not surprising; the size of a company, the number of analysts
covering the company, and the Price/Book Value are indeed very related.
Further, while by itself a lower PB means higher returns, if you control for
other factors a higher PB correlates with higher returns. Given that PB was
not statistically significant and that going with the individual model made
more intuitive sense, it was decided that we would use the signs from the
individual regressions, implying that PB would be weighted negatively.

The most disconcerting part of the results in table 3.3 is the R2. The
factors explain almost nothing of stock returns. It should be noted that the
use of a panel regression might yield a much higher R2 and should be looked
at in future work.

Now that we have the correct signs, we can combine the individual factor
Z-scores to obtain Z1, according to the following equation:

Z1,i =
−Z.PB1,i − Z.Size1,i − Z.PEGH1,i + Z.RECC1,i − Z.EPSFN1,i − Z.M3M1,i

6
(3.1)

This gives us Z1 for stock i. Now we can regress the Z1 for each stock
against the return in the next month (i.e. we want to know what kind of
value for Z1 will yield what kind of return next month). A linear regression
of Z1 against monthly stock returns from 1994 to 2006 yields the following:

Z1 against returns
Z1

T − V alue 4.70
Adjusted−R2 5.61 ∗ 10−5

Clearly the current ranking system is not explaining anything about stock
returns from a significant historical period (monthly returns from 1994-2008).
A reason for the high T-Value is the extremely large data set (380,000 data
points). Clearly the Z1 is significant even though it is not explaining much
variability in returns. Ideally, we would like our ranking system to more
useful in predicting returns. However, this obviously depends to a large
extent on the factors.
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3.4 The Outliers Problem

Ideally a good ranking system should be able to handle huge outliers that are
the result of certain ratios (price/book, PE/growth rate). Outliers should be
considered, but they should not hugely affect the ranking of the rest of the
stocks. Clearly, this is an issue for Z1, which places way to much emphasis
on outliers as a result of its use of standard deviation, which tries to haul in
outliers by giving them a heavier weight.

3.5 Strange Theoretical Distributions Problem

Ideally a good ranking system should relate the economic theory behind
factors to its quantitative methods. The best example of a strange theoretical
distribution is the PB factor. In economic theory, a stock with a negative
PB is most like a stock with an infinitely positive PB.

PB =
Price

BookV alue

The Price of a company is always a large positive value from 10 Million to
1 Trillion dollars. Book Value, on the other hand, can be very small as a
company approaches bankruptcy, and even be negative. Hence a Company
close to bankruptcy will either have a very, very large positive PB ratio (a
result of the very small book value compared to company price), or it will
have a negative PB (as a result of the negative book value). These near
bankrupt companies are qualitatively very similar yet they have book values
ranging from negative infinity to 0 and from 1000 to positive infinity.

Currently, near bankrupt companies can have PB Z-scores including
both large positives and large negatives (but not anything in between), even
though they are nearly identical in terms of economic theory. Likewise, a
stock with a small negative PB will have a nearly identical Z-score to a
stock with a small positive PB, when in fact these stocks are at the opposite
end of the economic spectrum; the small positive PB stocks are the cheapest
to buy, and the small negatives (i.e. small in absolute terms) are the most
expensive. In this case, the easiest way to correct this is mapping all the
negatives to a huge positive number; this would clump the near bankrupt
companies Z-scores together. It is likely for this reason that PB is the only
insignificant variable in the regression against returns done earlier.

In sum, a ranking system should be able to handle problems like PB.
That is our ranking system should accurately handle negative values that
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are theoretically the same as infinitely large positive values; if this is not
possible, it should at least handle them in such a way that they do not
affect the rankings of other stocks unnecessarily. A system that is robust in
handling this problem and similar ones is ideal. Z1 fails in this regard.

4 Development of Metrics

Having identified problems with Z1, it is a good time to develop metrics
to evaluate various ranking systems. This will allows us to identify ways to
come up with new Z-score models that address the problems afore mentioned.
Each of the metrics described below was developed specifically to address one
or more of the problems identified with the Z1 ranking system.

4.1 The Percentile Rank Metric

The percentile rank metric stems out of the percentile rank problem. This
metric seeks to measure “how far away” the ranking system is from a purely
“percentile rank” ranking system. Let us define a percentile rank system.

For each factor j, line up all of the stocks from greatest to least, and rank
them 1 to n. If the factor is to have a negative weight in the weighting later,
then rank them least to greatest from 1 to n. Do this for every factor. For
each factor j, convert each stock i into a factor percentile rank FactPerj,i
by Equation 4.1.

FactPerj,i =
(n− stockRankj,i)

n
(4.1)

n is the number of stocks and stockRankj,i is the rank of stock i for factor
j by the system described above. In the future, we will describe the process
of going from data to a percentile rank as “taking the percentile rank”.

Now we combine percentile ranks from the factors for each percentile rank
with the following function.

PerSumi =
m∑
j=1

|kj|FactPerj,i (4.2)

kj is the weighting for factor j picked by the portfolio manager. Note that
the absolute weighting is used here because we already accounted for the sign
when we did the ranking earlier. PerSum will range from 0 to m, where m
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is the number of factors. Hence a stock in the 0th percentile for each factor
will have a PerSum of 0, and a stock that is in the 99th percentile for each
factor will have a PerSum of m*.99.

Next, stocks are ranked from from 1 to n based on PerSum and we per-
form the following computation (i.e. “take the percentile rank” of PerSum).

PerRanki =
(n− PerSumi)

n
(4.3)

which gives a percentile rank for stock i. Now, each stock has a numerical
“percentile” between 0 and 1 that accurately combines its percentiles for
each individual factors. One should note that the method described above is
the same one used when combining test scores from standardized tests with
different subsections (i.e. one could score in the 95th percentile for the math
section and the 95th percentile for the verbal section of a test and get a score
of the 99th percentile overall).

Let Zα,i denote the overall Z-score for stock i for a certain ranking system
α. To compare to the percentile ranks that were developed from the factors
themselves it is necessary to create a percentile rank for the ranking system
α. Take the rank for Zα,i from 1 to n and convert this to a percentile rank
to create a ranking system percentile rank, P.Zα,i, for each stock i. Now we
calculate how far away the ranking system α is from a straight percentile
rank ranking system by the following equation.

PMα =

∑n
i=1(|PerRanki − P.Zα,i|)

n
(4.4)

PMα is the average misfire for ranking system α, and is a final numeric
metric for comparing different ranking systems. The lower PMα, the better.
In addition to the mean of |PerRanki − P.Zα,i|, one could also look at its
median and standard deviation.

4.2 The Outliers Metric

The outliers metric measures the effect of outliers on the rest of the distri-
bution. First, compute any ranking system Zα. Map the top 2% of each
factor to the 98th percentile, and map the bottom 2% of each factor to the
2nd percentile. Now compute Zα on our revised factors and call this ranking
Z.Outα.

16



To measure how far Zα is from Z.Outα, perform the following computa-
tion:

OMα =
1

n

n∑
i=1

|Zα,i − Z.Outα,i
σZ.Outα

| (4.5)

Here we take the average deviation of Z.Outα from Zα. We divide this
by σZ.Outα to scale the difference. The division serves as a scaling factor
for the difference between the two ranks (i.e. that way we can compare
metrics between different ranking systems). OMα is the outlier metric for
ranking system α, and, as a single number, can be compared between ranking
systems. The lower the value of OMα, the less that outliers are effecting the
ranks of the other stocks. Like in the case of the Percentile Metric, looking at
the standard deviation and median of |Zα,i−Z.Outα,i

σZ.Outα
| will show us additional

information in cases where the means (i.e. OMα) are very close together.

4.3 The Strange Theoretical Distributions Metrics

Metrics stemming from the Strange Theoretical Distributions Problem (STDP)
need to be made on a case by case basis for each strangely distributed factor.
We will lump any metrics developed as a solution to the STDP as the Strange
Theoretical Distributions Metrics.

The one we have discovered thus far is the PB problem. As discussed
earlier, theoretically the distribution should map negatives to positive infinity
(i.e. a PB of -1 is “greater than” a PB of 1000). To handle the specific PB
problem map all of the negative PB’s to the largest positive PB ratio. Then
rank the stocks on the altered factor and the other stock factors using the
Zα system; call this ranking system Z.PBMα. Compute Zα as usual.

PBMα =
1

n

n∑
i=1

(
|Zα,i − Z.PBMα|

σZ.PBMα

) (4.6)

For reasons similar to those in the above section, we want the lowest
PBMα possible.

4.4 The Returns Metric

While its importance amongst academics is heavily disputed, this research
team has decided to include at least one practical metric that does what
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Portfolio Managers care about, predicting stock returns. For this metric, we
regress our ranking system Zα against stock returns in the next month. That
is, we want to predict future returns.

The goal is to achieve the highest R2 possible. For an example of this
test for Z1 please refer to section 3.3. The R2’s can be compared directly
between different ranking systems.

5 Development of Ranking Systems Zα

Having developed metrics, we turn to developing some alternative ranking
systems.

5.1 Z2, the MAD Median Ranking System

A good first alternative that handles outliers well is the MAD Median Z-
score. Instead of the mean in Z1, it uses the median, and instead of the
standard deviation, it uses the the adjusted MAD. The adjusted MAD is the
absolute median deviation from the mean, multiplied by 1.4826. The major
benefit of the MAD is that it does not “haul in” outliers very much because
there is not a squaring effect (that is present in the standard deviation).
Hence, in distributions with large outliers, the MAD will not be as large as
the standard deviation and hence the Z2 scores will be larger.

Z2,i,j =
Xi,j −Median(X)

AdjustedMAD(Xj)

5.2 Z3, the Trimmed Mean Ranking System

Z3,i,j =
Xi,j − trimmed(Xj)

trimmed(S(Xj))

The trimmed mean Z-Score takes the middle 80% of the data and calculates
the mean and standard deviation from that. This is to reduce the effect of
large outliers, and should perform better on our Percentile Rank and Outliers
metrics. However the outliers are still included in the data, just with a revised
mean and standard deviation. The logic here is very similar to that of Z2

since trimmed(S(Xj)) << S(Xj).
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5.3 Z4, the Logarithmic Ranking System

Z4,i,j =
ln(adjXi,j)− ln(adjXj)

S(ln(adjXj))

For Z4 the bottom 2% of the data is taken out if Z4 contains negatives. If
the 2nd percentile is negative then all the rest of the data is made positive by
adding the value of the 2nd percentile to the data. We take ln(adjX), where
adjX is the data with the previous adjustment, and compute initial.Z4 as
shown above. Finally, the bottom 2% is mapped to min(initial.Z4). The
result of this final mapping is Z4. The goal of Z4 is to again to haul in outliers
with the use of a logarithm, while hopefully not decreasing performance on
the Returns and Strange Distributions Metrics. In order to use a logarithm,
all the data values need to be positive, which explains the mapping to turn
all of the data values positive before the logarithm is used.

5.4 Z5, the Percentile Ranking System

This ranking system, which takes the bull by the horns with respect to the
percentile rank metric, is the percentile rank metric. That is, the percentile
rank of each factor is found, the factors are summed by the given weighting
system, and then the percentile rank of that distribution is taken. Hence this
ranking system will have a PMα equal to zero. For a computation of the Z5,
please see section 4.1; in that section PerRanki is Z5 for stock i.

6 Testing Results: The Ranking Systems on

the Metrics

After developing metrics and ranking systems, the natural course of action
is to test the ranking systems on the metrics.

6.1 The Percentile Rank Test

The first metric we tested was the percentile rank metric. The following
results were found.
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Percentile Test
Zα PMα σMisfire MedianMisfire
Z1 .15 .13 .12
Z2 .15 .15 .10
Z3 .10 .10 .07
Z4 .06 .09 .04
Z5 .00 .00 .00

Based on PMα, Z1 ties for last in this metric. This is not surprising since
all of the other Z-scores we created had this metric in mind. Z5 is zero, given
that it is the percentile rank metric, this should not be surprising. Most
fascinating is that our most creative metric, Z4, performs quite well, with an
average misfire of .07.

One unfortunate result of the above is that Z2, the MAD-Median Rank-
ing, was no better than Z1; given that the MAD-Median is supposed to handle
outliers better (i.e. it uses a trimmed standard deviation, which should result
in a lower standard deviation that better differentiates between the bulk of
the data close to the mean) we would have expected it to outperform Z1 in
percentile rank.

There is nothing too surprising with the median and standard deviation
of the misfires. For all the ranking systems (save Z5), the data was skewed
upward from 0. Given that the data lies so close to 0, yet 0 is a hard limit (i.e.
there cannot be a negative misfire), the skew upward was almost expected.
Considering how small the mean and median misfire were for Z4, its standard
deviation of .09 is quite large.

Given that every ranking system created performed better or as well as
Z1, the above results are promising.

6.2 The Outliers Test

The outliers tests takes the bottom 2 and top 2 percentiles of each factor and
maps them to the 2nd and 98th percentile, respectively. Then it computes
the ranking on these revised factors, and sees “how far away” the revised
rankings are from the original ones. The results, the mean, median, and
standard deviation of the “misfire”, are shown in Figure 6.2.
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Outliers Test
Zα OMα σMisfire Median Misfire
Z1 .45 .96 .31
Z2 .30 9.7 .04
Z3 .45 21 .00
Z4 .15 .60 .05
Z5 .001 .01 .00

These results are very interesting. First we note that Z1 comes in dead
last; it does nothing to control for outliers so this is expected. Also, first place
goes to the percentile rank metric, once again. Given that Z5 accords no cre-
dence to outliers and grades by percentile, this was also relatively expected.
Z2 and Z3 perform admirably, however both have huge standard deviations
for the misfire (|Zα,i−Z.Outα,i

σZ.Outα
|) that would be worth exploring further. Note

how low their medians are compared to their standard deviation; the skew
and outliers are pulling the mean significantly.

Z4 performs pretty well all around, and its misfire suffers from a skew
as well, but not as pronounced. Given that Z4 is logarithmic, performing
relatively well on this metric was expected.

6.3 The PB Test

The PB test, stemming from the Strange Theoretical Distributions Problem,
maps the negatives of the PB factor to the maximum PB, recalculates the
rankings on the altered factors, and tests “how far” they are from the original
rankings. The results from our data set are shown in Table 6.3.

PB Test
Zα OMα σMisfire Median Misfire
Z1 .12 .71 .05
Z2 .16 5.4 .01
Z3 .13 1.0 .00
Z4 .22 .97 .06
Z5 .05 .19 .03

Z5, the factor least affected by extreme values, once again outperforms.
As expected, Z2 and Z3 come in far ahead of Z1 if one uses the median as
the yardstick, which we will do. There are some extreme values in Z2 (and
to a lesser extent Z3) that throw off the mean.
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Most surprising is Z4. Normally a top performer, it comes in as the worst
ranking on this metric (though its median is almost equivalent to Z1). PB
is a factor that has negative values; as such, normally Z4 takes all of the
negatives out below the second percentile, adds the second percentile to the
data, calculates Z4 on the adjusted data according to Equation 5.3, and then
maps back in all of the negative points to the new minimum value.

However, Z4 does not do this for the adjusted PB factor because all
the negatives of PB are mapped to the maximum. Therefore, Z4 skips the
mapping portion (since there are no negatives) and calculates the logarithm
instead. Hence, due to how Z4 was defined, it is calculated in two very
different ways under this metric. The difference in calculation, the mapping
and adding the second percentile in normally and not doing it for Z.PBM4,
explains why it performs so badly on this metric.

6.4 The Returns Test

The most practical of our tests looks at how much of stock returns is predicted
by our ranking system. Hence each of the rankings was regressed against the
next month’s stock returns.

Returns Test
Zα T − V alue R2

Z1 4.70 5.6 ∗ 10−5

Z2 1.04 2.0 ∗ 10−7

Z3 0.78 −1.0 ∗ 10−6

Z4 17.0 7.4 ∗ 10−4

Z5 12.6 4.2 ∗ 10−4

Fascinating results! The most striking thing from the data are the ad-
justed R2s - they are meaninglessly small and one is even negative(Z3). So
almost none of stock returns are being explained by our model. Note that
this was done in a regression without panels for time, which skews the R2’s
downward, given that the correlation between stock returns in any given
month is incredibly high.

Getting beyond that, some of our ranking systems are definitely statis-
tically significant because of their high T-statistics and p-values (although
they are not explaining much). Z4 is the clear winner, with Z5 not far behind;
Z1 is still significant, and Z2 and Z3 fail miserably at predicting returns.
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7 Ranking System Distributions

Having developed ranking systems and metrics and having tested the systems
on the metrics, a natural follow up questions is: How does each ranking
system relate to each other? Why did some systems perform differently? A
good place to start the analysis is to look at the histograms of some of our
ranking Z-scores.

7.1 The Distribution of Z1

Figure 5: Histogram of Z1

As evidenced by Figure 5 which has a constrained x-axis, Z1 has a slight
skew to the positive side. Almost all the data is concentrated between -1 and
1. This is why figure 6 is useful; it shows how spread out the outliers are.
The reason that the median, the box, and the whiskers aren’t visible is that
they are all focused on the line in the middle; i.e. they are all approximately
0 compared to the outliers. The most extreme outliers (3 positives and about
20 negatives) stray out all the way to positive and negative 100. In addition,
there are a lot of outliers that are less extreme that lie either between -5 and
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Figure 6: Box Plot of Z1

-20 or 5 and 20. These outliers explain why the standard deviation for Z1 is
so large.

7.2 The Distribution of Z2 and Z3

As shown in Figures 5, 7, and 8, the graph of every ranking system is skewed
to the negative side. Like the histogram of Z1, the axes of the histograms
for Z2 and Z3 are constrained. A view of the box and whisker plots for Z2

and Z3 would result in a similar view as the box plot for Z1; a ton of outliers
lie outside the box and whiskers. Z3, the trimmed mean, has a particularly
heavy skew to the left.

7.3 The Distribution of Z4

The use of a logarithm has resulted in a much more bell shaped distribution
for Z4, visible in Figure 9. Also interesting is the recognizable bump in the
histogram of Z4 (Figure 9) on the positive side.

We shall address the bell shaped nature of the distribution of Z4 first, and
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Figure 7: Histogram of Z2

Figure 8: Histogram of Z3
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Figure 9: Histogram of Z4

Figure 10: Box Plot of Z4
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then its bump on the positive side. Note that the logarithm brings outliers
in and clumps the data together. Although to create Z4 we added logarithms
together (the Z-scores for each factor are added together to create an over-
all Z4), this results in the multiplication of the factors inside a logarithm
because:

ln(j1) + ...+ ln(jm) = ln(j1 ∗ ... ∗ jm)

So net, we are taking a logarithm, which typically results in a more bell
shaped distribution. As additional evidence to this clumping phenomenon,
Figure 10 shows the box and whisker plot for Z4. It is mildly useful to read,
as we can make out the box, the whiskers,and the median. The distribution is
centered around the median at 0 and the first and third quartiles are located
at -.4 and .4; the whiskers lie at about -2 and 2. The min and max are much
tighter than the other distributions, located at -18 and 22, respectively.

7.3.1 The Positive Bump of Z4

Note that if a factor has negative values, then the bottom 2% of the values
are taken out, and all of the data shifted upward by the 2nd percentile to
make the data positive. Then the factor Z-score, Z4,Factor is taken, and the
previous negative values mapped back to the minimum of the factor Z-score.
In our case, only half of our factors, PB, pegh, and RECC have negative
values and are subject to this. Hence we would expect a bump on the negative
side on the histogram of Z4,PB,Z4,RECC , and Z4,pegh. The negative bump is
visible in Figure 11, located at -12.

The weights for Z4,pegh and Z4,PB are negative, so this bump get trans-
ferred to the positive side in the combined weighting. Further, a large neg-
ative pegh and large negative PB are highly correlated (a company with a
negative book value also probably has negative earnings). As we can see
from Figure 11 that shows the distribution of Z4,pegh (the histogram of Z4,PB

is similar), these stocks will have values for both Z4,pegh and Z4,PB of about
-12. When combined with the other factors Z-scores that are close 0, shown
in Equation 7.1, we would expect these stocks to have a Z4 of approximately
4.

Z4 =
1

6
(−Z4,pegh − Z4,PB + Z4,RECC − Z4,Size − Z4,EPSFN − Z4,M3M) (7.1)

u
1

6
(−(−12)− (−12)− 0− 0− 0− 0) = 4
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Figure 11: Histogram of Z4,pegh

If we look back at Figure 9, we see that the small positive bump of Z4 is
centered around none other than 4, just as we suspected. Voila!

A natural question arises, why is there no bump for Z4,RECC on the neg-
ative side of the histogram of Z4. The weight for Z4,RECC is positive, so its
negative bump should be visible in Z4. The bump would be centered around
(-12/6) = -2; Z4 already has a lot of points around -2, and hence it is not
noticeable.

7.4 The Distribution of Z5

As expected, Z5 is an even distribution between 0 and 1. The points are
evenly spaced by construction as each Z-score is a percentile. In many senses
this is the “opposite” of Z1 because it does not give special value to extreme
data values.
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Figure 12: Histogram of Z5

8 Ranking System Distributions Compared

To Each Other

Three outliers were removed that had extraordinarily high z-scores for Z1 to
Z3 in this analysis; three outliers in a data set of 385000 points should not
affect results much.

Figure 13 of the various Z-scores against each other yields some very in-
teresting results. The first is the three distinctive double-linear relationships
amongst Z1,Z2, and Z3. That is, all the data points appear to lie on one of
two linear relationships between Z1 and Z2 or in the mass of points in the
middle . The same is true of Z1 vs. Z2, Z2 vs. Z3, and Z1 vs. Z3. Z4 and
Z5 differ the most from the first three metrics mathematically, and hence the
more bizarre nature of their graphs seems to be a natural result.
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Figure 13: Distributions Plotted Against Each Other
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8.1 Z1 vs. Z2

To get a better idea of the double linear relationship of the first three ranking
system, we will look at an example. Figure 14 zooms in on the specific case
of the relationship of Z1 and Z2. It is a clear that there is a double linear
relationship; however at their intersection, where almost all of the 380,000
data points lie, the linearity breaks down.

Figure 14: z1 vs. z2

To understand the double linearity, it is helpful to look at the factor
components of Z1 and Z2, PB.Z1 and PB.Z2, in Figure 15. PB.Z1 and
PB.Z2 represent the normalization of the PB factor for Z1 and Z2 before
being linearly combined (by addition) with the other factors.

A perfectly linear relationship! Of course there must be a mathematical
reason for such results; a simple proof of this linear relationship is shown
below.

Z1,i,j =
Xi −X
S(X)

∀i
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Figure 15: pb.z1 vs. pb.z2

Z2,i,j =
Xi −Median(X)

Adj.MAD(X)

Xi = X + S(X) ∗ Z1,j = Adj.Mad(X) ∗ Z2,j +Median(X)

Z1,j = (Median(X)−X) +
Adj.Mad(X)

S(X)
∗ Z2,j

Hence Z1 is linearly related to Z2 by the above equation — one would
expect a graph of the two of them to be a straight line, which was revealed in
Figure 15. The proof of this linear relationship, when using only one factor,
helps us explain the relationships of different ranking systems to each other
in Figure 13.

Firstly, it will not necessarily be true that because the individual factor
Z-scores are linearly related that the sum of factor Z-scores will be linearly
related. Indeed, assuming that the factors are not highly correlated, adding
even two factor Z-scores together should result in a mass of points.

After pulling out some points from the ends of the two lines, it was found
that the more horizontal of the two lines consists of points with a very large
PB factor Z-scores (either negative or positive), and 0, N/A, or near 0 values
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for all of the other factor Z-scores. The large negative PB stocks are on the
far right side of the line and the large positives are on the far left side of the
line. The complete linearity between PB.Z1 and PB.Z2 we found in Figure
8.1 essentially “hijacks” the relationship of Z1 and Z2 for those points; the
values for PB, and hence PB.Z1 and PB.Z2, are so large that the input
from the other 5 factors is nil.

As an additional piece of evidence of this explanation, one should notice
that as one goes along the line towards the mass of data points in the center
on graph, the points jitter outwards from a straight line. The jittering, or
noise, is the result of the other factor Z-scores pulling the data points off of
the perfect line when they are non-zero but still small.

Having explained the horizontal line, we move to the more vertical line
of the two. Upon closer inspection, these are actually two rays (half-lines)
emanating from the center mass of points driven by different causes; the
one going downwards contains points with incredibly large positive M3M
values, and the ray going up contains points with very large negative pegh
values. The jittering and analysis for these linear relationships are the same
as with PB. A natural question emerges: why does PB have a full line of
points, whereas M3M and pegh are only rays (half-lines)? M3M cannot
have negative values since it is the three month momentum; hence it has no
large negative outliers that would “complete” the line. pegh, while it does
have large positive values, they are not as large as the negatives by a factor of
two. Given that the pegh ray is small to begin with on the negative side, its
positive outliers are not large enough to see a distinguishable line emerging
from the mass of points in the center.

Hence, outliers in the PB, pegh, and M3M factors completely explain
the interesting relationship between Z1 and Z2.

8.2 Z1 and Z2 versus Z3

Building on Section 8.1, we now additionally consider Z3. Z1 vs. Z3 has the
exact same analysis as Z1 vs. Z2. The proof of the one component linear
relationship is identical so won’t be repeated, but the resulting equation is:

Z1,j = (Trimmed(Xj)−Xj) +
trimmed(S(Xj))

S(Xj)
∗ Z3,j (8.1)

The PB line remains almost entirely unchanged. The rays for M3M and
pegh are slightly shifted.
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The similarity between Z1 vs. Z3 and Z1 vs. Z2 is almost expected
because Z2 and Z3 both attempt to trim down the normalization by giving
less credence to outliers; Z2 subtracts the MAD and divides by the median
whereas Z3 cuts out the ends (the bottom and top 10%) and still uses the
mean and standard deviation.

Figure 16: z2 vs. z3

The distribution for Z2 vs. Z3, visible in Figure 16, looks less random
than the distribution for Z1 because of the similarity between Z2 and Z3.
However, the same linearity proof for one factor holds, resulting in Equation
8.2.

Z2,j = (Trimmed(Xj)−Median(Xj)) +
trimmed(S(Xj))

MAD(Xj)
∗ Z3,j (8.2)

Again we see the same line from PB, and the rays (albeit less visible than
previously) for M3M and pegh.
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8.3 Z4 versus Z1, Z2, and Z3

Having thoroughly explained the relationships evident in the figures of Z1,
Z2, and Z3, we now turn to the relationship of these three ranking systems
with Z4.

The main theoretical difference between Z4 and the first three ranking
systems is its use of a logarithm and its exclusion and then reinsertion of the
first two percentiles for factors that contain negative points. All three graphs
of Z1,Z2, and Z3 vs. Z4 look relatively similar, visible in Figure 13.

There are a total of 4 groups of data in the figure, and then there is
the mass of data in the middle. Before breaking down these groups, let us
analyze the factor distributions.

8.3.1 The All Positive Factors of Z4: M3M , Size, and EPSFN

Let us deal with factors that are all positive first, like M3M . These factors
don’t get adjusted before the logarithm because they are entirely positive.
That is adjXi = Xi because there is no mapping adjustment.

Z1,i,j =
Xi −Xj

S(Xj)

Z4,i,j =
ln(adjXi)− adjXj

S(ln(adjXj))

Since adjXi = Xi, we can use the same replacement in earlier proofs (i.e. set
both equations equal to Xi and solve for Z1). After algebra, this yields the
following:

Z1,j =
1

S(Xj)
(XjS(Xj)

Z4,j −Xj) (8.3)

Unlike the relationships of our first three ranking systems with each other,
this relationship is exponential. There is an exponential relationship for Z2

and Z3 with Z4 as well(the algebra and equations for Z2 and Z3 vs. Z4

are almost identical to the above and will not be reproduced here). This
exponential relationship is shown in Figure 17.

8.3.2 The Other Factors of Z4: PB, RECC, and pegh

These factors undergo a mapping whereby the bottom 2% is taken out, the
2nd percentile is added to the data, the natural logarithm of the adjusted
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Figure 17: M3M.Z1 vs. M3M.Z4

data taken, and then it is normalized by subtracting the mean of the adjusted
data and dividing by the standard deviation; finally the bottom 2% is mapped
back in to the minimum factor Z-score. The result is that our data, our Xi,
are slightly different than they would otherwise be. Call the adjustment to
Xi a constant SP , where SPj stands for value of the second percentile for
the factor j (which is the value of the adjustment). Then Xi +SPj = adjXi;
Z1 and Z4 are still given by:

Z1,i,j =
Xi,j −Xj

S(Xj)

Z4,i,j =
ln(adjXi,j)− adjXj

S(ln(adjXj))

Then instead of adjXi we substitute in Xi,j + SPj and solve for Z1. The
result is displayed in Equation 8.4.

Z1,j =
1

S(Xj)
(XjS(Xj)

Z4,j −Xj − SPj) (8.4)
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For the top 98% of the data, we should then still see roughly an expo-
nential curve, like the positive factors. However, for the bottom 2 percent of
the factor data, we will see a vertical line because all of the Z4 data is equal
to the minimum of its top 98% while the data for Z1,Z2, and Z3 continues
onward. Figure 18 shows the phenomenon in action. As expected there is an
exponential curve with a vertical line at the end. Excellent!

Figure 18: PB.Z2 vs. PB.Z4

8.3.3 Looking Again at Z4 vs. the first 3 ranking systems

Now we look back at Figure 13. Note that they are relatively similar. We
will look only at Z2 versus Z4 and generalize; the arguments explaining the
graphs of Z1 vs. Z4 and Z3 vs. Z4 are the same.

Looking now at Figure 19, the horizontal line extending to the right from
the center in all 3 graphs (Z1, Z2, Z3 vs. Z4) are stocks that have very small
positive decimal values for M3M , but are close to the factor mean or N/A
for the other 5 factors. Since the ln is taken in computing Z4 and the ln
of a positive value less than 1 is a large negative number, the small positive
decimal values of M3M become very large negative numbers in M3M.Z4.
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Figure 19: Z2 vs. Z4

These points also have NA values for the other factors. The exponential
curve extending out of the mass of points horizontally to the left and then
downwards are stocks that have very large values for M3M , and are NA for
the other factors.

Similar to the PB line in the case of the first three ranking systems
which jutted out of both ends of the mass of points in the middle, the M3M
exponential curve juts out horizontally of both ends of the middle mass in
Figure 19. To the casual observer it looks like the graph of y = ln(x) with a
bunch of noise in the middle of the graph. Because of the outliers in M3M ,
M3M.Z4 ends up being very large, dominating the other factors (especially
if the other factor have values close to the factor mean or NA). The reason it
is “upside down”, i.e. it looks logarithmic instead of exponential, is because
of both the axis choice and that M3M.Z4 has a negative coefficient when it
is linearly combined with the other factor Z-scores. Also similar the jittering
off of the PB line in the first three ranking systems, we see the example of
jittering off of the M3M exponential curve for Z4.

Looking again at Figure 19, the group of points going directly downward
toward the left-center of the graph, and the group of points going upward in
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the center of the graph, have very large positive and very large negative PB’s,
respectively. This is the faux exponential curve of PB that we discussed in
the last section (refer to Figure 18)! The part going downwards is composed
of the points with the highest PB’s and is exponential in nature (the jittering
makes this unintelligible however); the part going upwards is composed of
the stocks with the lowest PB’s, these got lopped off and mapped to the 2nd
percentile.

Hence M3M and PB explain all the deviations from the center mass of
points in the graphs of Z4 versus Z1, Z2, and Z3.

8.4 Z5 versus Z1, Z2, Z3, and Z4

Z5, based on the percentile rank metric, has the most unique relationships
with the other ranking systems.

The first thing to note is that it does a very good job of bringing outliers
into its mass, which was done by design. All of the outliers from the first
three ranking systems are brought in; most of them are not even near the 0
or 1 on Z5.

Most noteworthy about this is the relationship between Z4 and Z5. A
regression between these two variables would probably give a high level of
significance, but an inverse relationship! That is, the highest Z4 values are
in the 0th percentile for Z5, and visa versa. Given that both of these systems
perform very well on our metrics, this is fascinating and should be looked at
in future work.

9 Conclusion

The reason for this study, finding a better stock ranking system, has proven to
be quite a bit more complicated than we had originally thought. That being
said, we should present our results of testing our systems on our metrics.

9.1 Testing Results

Table 9.1 shows how each Zα performed on the different metrics, by rank.

39



Testing Results
Zα Returns Test Percentile Test Outliers Test PB Test
Z1 3 5 5 3
Z2 4 4 4 2
Z3 4 3 2 1
Z4 1 2 2 4
Z5 2 1 1 1

Even a cursory glance at Table 9.1 shows that Z5 and Z4 are at the head
of the pack, Z3 is towards the middle, and Z2 and Z1 come in last. However,
more needs be said, because some of these test are very related and do not
show things that are that different from each other.

The most important metric, from a practical standpoint (and statistics
is an applied mathematics) is the returns test. Z4 comes in a solid first in
this test, with a t-statistic of 17, followed by Z5, with a t-statistic of 12.
Z2 and Z3 values are insignificant, and considering that they cannot explain
14 years of monthly stock returns, all but entirely rules them out as good
systems from the start. Z1 is definitely significant (t-statistic of 5), so it stays
a contender.

The percentile rank metric, designed to test the problems of overreliance
on outliers and overweight of certain factors that results from this, is our
second most important metric. Our first and second place, Z4 and Z5 are the
same, although in reverse order; it should be mentioned that the percentile
ranking system, which is the same as the metric, was clearly going to get
first on this. Surprisingly Z4 again finishes at the top of the pack, at 2nd,
far ahead of Z1,Z2, and Z3.

In the outliers metric, we have the same first and second place, Z5 followed
by Z4, as the percentile rank metric, however Z3 performs as well as Z4 in
this case. Unsurprisingly, given the relative similarity of the Percentile Test
and the Outliers Test, Z1 again comes in last.

I struggle to consider the PB test by itself, as it was developed and
intended to be one of many strange theoretical distribution metrics. In its
creation it was expected that multiple other tests would be considered with
it, and hence we could see how robust a ranking system was to strange
theoretical distributions. Here we only have a sample size of 1 test; given
this, it is worthwhile to note that Z5 again came in first and Z1 underreported.

To summarize, Z5 comes as a clear winner amongst the ranking systems
considered, with Z4 as a clear second. Both metrics not only outperform
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Z1 handily in their significance predicting future stock returns, they also
outperform heavily on our theoretical metrics. Although it could be argued
that Z4 might be better than Z5 because of its slightly higher t-statistic in
the regression, ultimately Z5’s simplicity and its first place finish in every
other metric make it preferable. Further Z5 is already used in many other
applications; the combining of subsections in exam scores is the most obvious
of these applications.

In the future Portfolio Managers would be wise to switch to a percentile
ranking system (Z5) to rank stocks (or even logarithmic Z4), instead of the
more complicated, less robust, and less effective Z1.

Of course, a more complicated system is sometimes preferable when ex-
plaining investment decisions to clients...

9.2 Interesting Tangents

So many interesting things were found about the ranking systems and their
relationships to each other, it is hard to conclude any single thing from them.

The first would be that the intricacies of Z4 were examined; its strange
nature and relationship with the other factors proved fascinating. While
Z1, Z2, and Z3 were easier to explain, it was useful to be able to explain
the relationships between them and their distributions. Our analyses should
prove useful in trying to come up with metrics and other ranking systems in
the future.

9.3 Future Studies

It is impossible to have a flawless study, and flaws and incomplete areas
are abound here. First, another ranking system should be tested, one that
takes Z1 as normally each factor, and then maps each factor Z-score above
5 or below -5 to 5 and -5. This may effectively cure the outliers problem
more effectively than Z5; however, given the number of systems tested and
thought expended on the systems, we find a more effective Z-score than Z5

to be highly suspect.
More strange theoretical distributions problems should be found, and

metrics created to test these, to complement the PB problem. The PB test
by itself was much less meaningful. Ultimately we want a ranking system
that is robust to many different types of STDP’s, not just the PB problem.

41



Additionally, the regressions done in this paper should be done as panel
regressions as opposed to simple regressions, to account for the time variable.
If inserted, the time variable (i.e. the month) would explain a lot about stock
returns. It may also yield different statistical results of which factors and
ranking systems are significant.

The relationship of Z5 and the other systems would be useful to look at
in the future, if only from a mathematical perspective. Further, the test
statistics for the Outliers Test and PB Test should be reexamined, to ensure
that the test statistic we used matches up with our qualitative concerns.
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