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Solutions to Review Problems for Exam 1

1. Compute the (shortest) distance from the point P(4,0,—7) in R? to the plane
given by
dr —y — 3z = 12.

Solution: The point P,(3,0,0) is in the plane. Let

1
w:PAO?’: 0

-7
4
The vector n = | —1 is orthogonal to the plane. To find the
-3

shortest distance, d, from P to the plane, we compute the norm of
the orthogonal projection of w onto n; that is,

d =P, (w)l],
where
1 4

i

V36 \ s

a unit vector in the direction of n, and

)

P_(w) = (w - A)A.

n

It then follows that
d=|w-n],

1 25 25v/26
where w-n = ——(4+21) = —. Hence, d = A
V26 V26 26

2. Compute the (shortest) distance from the point P(4,0,—7) in R? to the line
given by the parametric equations

4.9. 0J

r = —1+44t,
y _7t7
z = 2—t.
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Solution: The point P,(—1,0,2) is on the line. The vector

4
v= | -7
-1
gives the direction of the line. Put
5
w= ﬁ’ =1 0

-9

The vectors v and w determine a parallelogram whose area is the norm
of v times the shortest distance, d, from P to the line determined by
v at P,. We then have that

area(P(v,w)) = lolld.

from which we get that

d .
[v]]
On the other hand,
area(P (v, w)) = [[v x wl,
where R
17 k N N R
vXw=|4 -7 —1| =063+ 315+ 35k.
5 0 -9

Thus, [Jv x w|| = 1/(63)2 + (31)2 4 (35)2 = /6155 and therefore

V6155

d —
V66

~9.7.

OJ

3. Compute the area of the triangle whose vertices in R?® are the points (1, 1,0),
(2,0,1) and (0,3, 1)
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Solution: Label the points P,(1,1,0), P;(2,0,1) and P5(0,3,1) and
define the vectors

1 -1

T T
v=PFPP =|-1 and w=PF = 2
1 1

The area of the triangle determined by the points P,, P, and P; is
then half of the area of the parallelogram determined by the vectors
v and w. Thus,

1
area( AP,P Py) = 5”” x wl,
where

i k o
vxw=|1 -1 1|=-3—-2j+k.
-1 1

1 V14
Consequently, area(AP,PP,) = E\/Q +44+1= 5 ~ 1.87. O

4. Let v and w be two vectors in R3, and let A\ be a scalar. Show that the area of
the parallelogram determined by the vectors v and w + Av is the same as that
determined by v and w.

Solution: The area of the parallelogram determined by v and w4+ Av

is
area(P(v,w + Mv)) = ||lv x (w + \v)||,

where
vX (W+A)=vXw+ I Xv=0vXw.

Consequently, area(P(v,w + \v)) = |[v X w| = area(P(v,w)). O

5. Let uw denote a unit vector in R™ and P;(v) denote the orthogonal projection
of v along the direction of u for any vector v € R™. Use the Cauchy—Schwarz
inequality to prove that the map

v Pg(v) forall veR"”

is a continuous map from R" to R™.
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Solution: P;(v) = (v-u)u for all v € R™. Consequently, for any
w,v € R",
Pi(w) — Pa(v) = (w-uw)u— (v-u)u
= (w-u—v-u)u

AN~

= [(w—v)-ulu.
It then follows that
[1Pa(w) = Pa(v)|| = |(w —v) - ul,
since ||u|| = 1. Hence, by the Cauchy—Schwarz inequality,
[1Pa(w) — Pa(v)]| < [lw—wvll.
Applying the Squeeze Theorem we then get that

lim | Ps(w) — Pa(v)|[ = 0,

[lw—v||—0

which shows that P; is continuous at every v € V. 0

6. Let U C R"™ be open and F': U — R™ be function satisfying
|F(v) — F(w)|| < K||lv—wl|* forall v,w € U,

and some positive constants K and a.

Prove that F' is continuous on U.

Solution: Let u be any vector in u. Then, since U is open, there
exists r > 0 such that B,.(u) C U. By the condition in (1), for any
v € B,(u),

0<[F(v) = Fu)|| < Kllv —ul*.

Now, since a > 0,
lim |jv—ul*=0.
[[lv—u||—0
Consequently, by the Squeeze Theorem,
lim |[F(v) = F(u)] = 0,

[[lv—u||—0

which shows that F' is continuous at u. Since u was an arbitrary
element of U, we have shown that F' is continuous on U. 0

4
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7. Define f: R> — R by

It (a,y) #(0,0)
flz,y) =

0 if (z,y)=1(0,0).
Prove that f is continuous at (0,0).
Solution: For (z,y) # (0,0)

2|yl

|f(z,y)] = e

<yl

< Var+ R
We then have that, for (z,y) # (0,0),

Thus, by the Squeeze Theorem,

lim z,y) — £(0,0)] =0,
i 1 y) = £(0,0)]

which shows that f is continuous at (0, 0). O]
8. Show that

2?2 — o2

flay) =4 g @97 (0.0
0, (z,y) = (0,0)

is not continuous at (0, 0).

and observe that for any 6 > 0

()
(RS

1
Solution: Let ¢ = 3
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but i .
o) - —1>-=¢
7(5:0) - r0.0| =15 =
Hence, f is not continuous at (0,0). O

9. Determine the value of L that would make the function

1
x sin <—> if y #0;
Y

L otherwise |,

[, y) =

continuous at (0,0). Is f: R? — R continuous on R?*? Justify your answer.

Solution: Observe that, for y # 0,

el = fosin (1))
o)
< Io

< Va2 4yt

It then follows that, for y # 0,

0 < [f(z,y)| < (2, y)l]-

Consequently, by the Squeeze Theorem,

|f(x,y)| = 0.

m
[I(z,y)|—0

This suggests that we define L = 0. If this is the case,

lim | f(z,y) = f(0,0)] =0,

[ (z,)[|—0

which shows that f is continuous at (0,0) if L = 0.
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Assume now that L = 0 in the definition of f. Then, for any a # 0,
f fails for be continuous at (a,0). To see why this is case, note that

for any y # 0
1
sin (—) ‘
Yy

as y — 0 does not exist. O

|f(a,y)| = lal

()

10. Define G: R? — R by G(z,y) = zy for all (z,y) € R% Prove that G is
continuous on R?; that is, prove that

and the limit of

lim  G(z,y) = G(x,,y,) forall (x,,y,) € R?

(%y)—)(%,yo)

" (z,y)l—ig(r;o,yo) G (2,y) — G(x0,9,)| =0 for all (z,,y,) € R
Proof: Using the triangle inequality we obtain
G(z,y) — G(20,90)] = |2y — ToYol
= |2y — 2oy + 2oy — oYo|
= (&= 2o)y + 7oy — 10)]

< o= o) [yl + |zo] [y — ol

Next, use the estimates

|2j - xO’ < H(way) - (‘rmyo)H
and
1y = Yol < I(2,9) — (20, o)

to obtain

|G (2, y) = G0, 90)| < [(2,y) = (o, y0) | [yl + || [(2,9) = (20, 0) I,

or
|G(‘T’y) - G<x07yo)| < (|y| + |x0|) ||(I,y) - (xmyo)”'
Observe that
lim )|y| = |Yol,

(@,9)= (20,90
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11.

which follows from the fact that the map (z,y) — y is continuous since it is a
projection. Thus,

lim (|y‘ + ‘xOD H(xay) - (xmyo)H = (|yo’ =+ ’xo‘) 0= 0,

(l’,y)—>(1’o,yo)

Hence, from

0< ’G(‘T’y) - G(x07yo)| < (|y| + |x0|) ||(.l’,y) - ('ro’yo)Hv
and the Sandwich theorem, it follows that

lim ‘G(.’E, y) - G(xo,yo)] = Oa

($7y)_>($o,yo)
which was to be shown. O
Let U denote an open subset of R? and let g: U — R be two scalar fields on U.

Assume that g(z,,y,) # 0 for some (x,,y,) € U. Prove that if g is continuous
at (2, Y,), then there exists § > 0 such that Bs(x,,y,) C U and

g xO?yO
(2,4) € Byl ) = o, )] > X2
Suggestion: Consider € = M > 0.

Solution: Since g is continuous at (x,,¥,), given € > 0, there exists
d > 0 such that Bs(x,,y,) C U and

(z,v) € Bs(o,Yo) = |9(x,y) — 9(x0, ¥0)| < €.

Taking ¢ = M > 0, we get a ¢ such that Bs(z,,y,) C U and
xO? o
(xay) S Bé(l'myo) = |g($,y) — g(xmyo” < |g(2—y)|

Thus, by the triangle inequality,

19(%0, Yo)| = |9(x0, Yo) —g(x, y)+g(x, y)| < |9(z,y)—9(z0, yo) | +|g(, y)|.
It then follows that, if (z,y) € Bs(z,,y,), then

|g(x07 yo)|

19(0, 4o)| <
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from which we get that

|9(Z0, Yo)|

(z,v) € Bs(xo,Yo) = |g(x,y)| > 5

O

12. Let U, g and (z,,¥,) be as in the previous problem. Assume that g(z,,y,) # 0
and that g is continuous at (z,,y,). Put

h(x,y) =

g(z,y)

Prove that h is continuous at (z,,y,)-

Suggestion: Use the result of the previous problem and the Squeeze Theorem.

Solution: First observe that, since g(x,, yo) # 0, h(x,,y,) is defined.
We want to show that

1 1
— =0.
g(z,y) g(xmyc))

lim h(z,y) — h(x,,y,)| = lim
(x,y)ﬁ(xo,yo)|< 2 (o, 4o (z,y)—*(z0,Y0)

To show this, compute

1 1

9z, y)  9(@e,yo)|

Note that if we restrict (x,y) to lie in Bs(z,,y,), where § > 0 is as in
the previous problem, then

:BO7 ]
ofa.p)| > 28]

by the result of the previous problem. We therefore get that, for
(x,y) € Bs(%0,Y,), g(z,y) # 0 and

1 1

9(z,y)  9(To, Yo)

_ ‘g(xoayo) - g($7y)
9(x,y)9(o, o)

|g(l‘, y) - g('rm yo)|
19(z, y)| |9(2o, yo)]

2
19(70,Yo)|?

N

’ |g(x,y) - g(Ioayo”'
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Thus, if (z,y) € Bs(xo, Yo),

2
0 < [h(z,y) — h(0,y0)| < 5 19(z,y) — 9(20, 90|

19(@0, Yo)]

where
lim  |g(z,y) — (70, ¥0)| = 0,

(z,9)—(T0,y0)
since ¢ is continuous at (x,,y,). It then follows, by the Sandwich
Theorem that

lim ’h(.%, y) - h(moa yo)‘ = 07

($vy)_>($07yo)

which was to be shown. ]

10



