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Chapter 1

Motivation for the course

We start with the statement of the Fundamental Theorem of Calculus (FTC)
in one–dimension:

Theorem 1.0.1 (Fundamental Theorem of Calculus). Let f : I → R denote a
continuous1 function defined on an open interval, I, which contains the closed
interval [a, b], where a, b ∈ R with a < b. Suppose that there exists a differen-
tiable2 function F : I → R such that

F ′(x) = f(x) for all x ∈ I.

Then ∫ b

a

f(x)dx = F (b)− F (a). (1.1)

The main goal of this course is to extend this result to higher dimensions. In
order to indicate how we intend to do so, we first re-write the integral in (1.1)
as follows:
First denote the interval [a, b] by M ; then, its boundary, denoted by ∂M , consists
of the end–points a and b of the interval; thus,

∂M = {a, b}.

Since F ′ = f , the expression f(x)dx is F ′(x)dx, or the differential of F , denoted
by dF . We therefore may write the integral in (1.1) as∫ b

a

f(x)dx =
∫

M

dF.

1Recall that a function f : I → R is continuous at c ∈ I, if (i) f(c) is defined, (ii) lim
x→c

f(x)

exists, and (iii) lim
x→c

f(x) = f(c).

2Recall that a function f : I → R is differentiable at c ∈ I, if lim
x→c

f(x)− f(c)

x− c
exists.
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6 CHAPTER 1. MOTIVATION FOR THE COURSE

The reason for doing this change in notation is so that later on we can talk
about integrals over regions M in Euclidean space, and not just integrals over
intervals. Thus, the concept of the integral will also have to be expanded. To
see how this might come about, we discuss briefly how the right–hand side the
expression in (1.1) might also be expressed as an integral.

Re–write the right–hand side of (1.1) as the sum

(−1)F (a) + (+1)F (b);

thus, we are adding the values of the function F on the boundary of M taking
into account the convention that, as we do the integration on the left–hand side
of (1.1), we go from left to right along the interval [a, b]; hence, as we integrate,
“we leave a” (this explains the −1 in front of F (a)) and “we enter b” (hence the
+1 in from of F (b)). Since integration of a function is, in some sense, the sum
of its values over a certain region, we are therefore led to suggesting that the
right–hand side in (1.1) may be written as:∫

∂M

F.

Thus the result of the Fundamental Theorem of Calculus in equation (1.1) may
now be written in a more general form as∫

M

dF =
∫

∂M

F. (1.2)

This is known as the Generalized Stokes’ Theorem and a precise state of this
theorem will be given later in the course. It says that under certain conditions
on the sets M and ∂M , and the “integrands,” also to be made precise later
in this course, integrating the “differential” of “something” over some “set,” is
the same as integrating that “something” over the boundary of the set. Before
we get to the stage at which we can state and prove this generalized form of
the Fundamental Theorem of Calculus, we will need to introduce concepts and
theory that will make the terms “something,” “set” and “integration on sets”
make sense. This will motivate the topics that we will discuss in this course.
Here is a broad outline of what we will be studying.

• The sets M and ∂M are instances of what is known as differentiable man-
ifolds. In this course, they will be subsets of n–dimensional Euclidean
space satisfying certain properties that will allow us to define integration
and differentiation on them.

• The manifolds M and ∂M live in n–dimensional Euclidean space and
therefore we will be spending some time studying the essential properties
of Euclidean space.

• The generalization of the integrands F and dF will lead to the study of
vector valued functions (paths and vector fields) and differential forms.



Chapter 2

Euclidean Space

2.1 Definition of n–Dimensional Euclidean Space

Euclidean space of dimension n, denoted by Rn, is the vector space of column
vectors with real entries of the form

x1

x2

...
xn

 .

Remark 2.1.1. In the text, elements of Rn are denoted by row–vectors; in the
lectures and homework assignments, we will use column vectors. The convention
that I will try to follow in the lectures is that if we are interested in locating a
point in space, we will use a row vector; for instance, a point P in Rn will
be indicated by P (x1, x2, . . . , xn), where x1, x2, . . . , xn are the coordinates of the
point. Vectors in Rn can also be used to locate points; however, they also indicate
direction. For instance, the point P (x1, x2, . . . , xn) is located by the vector

−−→
OP =


x1

x2

...
xn

 ,

where O denotes the origin, or zero vector, in n dimensional Euclidean space.

As a vector space, Rn is endowed with the algebraic operations of

• Vector Addition

7



8 CHAPTER 2. EUCLIDEAN SPACE

Given v =


x1

x2

...
xn

 and w =


y1

y2

...
yn

 , the vector sum v + w or v and w is

v + w =


x1 + y1

x2 + y2

...
xn + yn


• Scalar Multiplication

Given a real number t, also called a scalar, and a vector v =


x1

x2

...
xn

 the

scaling of v by t, denoted by tv, is given by

tv =


tx1

tx2

...
txn


Remark 2.1.2. In the text, vectors are denoted with an arrow over the symbol
for the vector; for instance, −→v , −→r , etc. We will do away with arrows over
symbols in these notes, lectures, and homework assignments. The context will
make it clear whether a given symbol represents a point, a number, a vector, or
a matrix.

2.2 Spans, Lines and Planes

The span of a single vector v in Rn is the set of all scalar multiples of v:

span{v} = {tv | t ∈ R}.

Geometrically, if v is not the zero vector in Rn, span{v} is the line through the
origin on Rn in the direction of the vector v.

If P is a point in Rn and v is a non–zero vector also in Rn, then the line
through P in the direction of v is the set

−−→
OP + span{v} = {

−−→
OP + tv | t ∈ R}.

Example 2.2.1 (Parametric Equations of a line in R3). Let v =

 2
−3

1

 be a

vector in R3 and P the point with coordinates (1, 0− 1). Find the line through
P in the direction of v.
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Solution: The line through P in the direction of v is the set
x

y
z

 ∈ R3
∣∣∣

x
y
z

 =

 1
0

−1

 + t

 2
−3

1

 , t ∈ R


or 

x
y
z

 ∈ R3
∣∣∣

x
y
z

 =

1 + 2t
−3t
−1 + t

 , t ∈ R


Thus, for a point

x
y
z

 to be on the line, x, y and z must satisfy

the equations  x = 1 + 2t
y = −3t
z = −1 + t

for some t ∈ R. These are known as the parametric equations of
the line. The variable t is known as a parameter. �

In general, the parametric equations of a line through P (b1, b2, . . . , bn) in the

direction of a vector v =


a1

a2

...
an

 in Rn are


x1 = b1 + a1t
x2 = b2 + a2t

...
xn = bn + ant

The span of two linearly independent vectors, v1 and v2, in Rn is a two–
dimensional subspace of Rn. In three–dimensional Euclidean space, R3, span{v1, v2}
is a plane through the origin containing the points located by the vectors v1 and
v2.

If P is a point in R3, the plane through P spanned by the linearly indepen-
dent vectors v1 and v2, also in R3 is given by

−−→
OP + span{v1, v2} = {

−−→
OP + tv1 + sv2 | t, s ∈ R}.

Example 2.2.2 (Equations of planes R3). Let v1 =

 2
−3

1

 and v2 =

 6
2

−3


be vectors in R3 and P the point with coordinates (1, 0− 1). Give the equation
of the plane through P spanned by the vectors v1 and v2.
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Solution: The plane through P spanned by the vectors v1 and v2

is the set
x

y
z

 ∈ R3
∣∣∣

x
y
z

 =

 1
0

−1

 + t

 2
−3

1

 + s

 6
2

−3

 , t, s ∈ R


This leads to the parametric equations x = 1 + 2t + 6s

y = −3t + 2s
z = −1 + t− 3s.

We can write this set of parametric equations as single equation
involving only x, y and z. We do this by first solving the system 2t + 6s = x− 1

−3t + 2s = y
t− 3s = z + 1

for t and s.
Using Gaussian elimination, we get can determine conditions on x,
y and z that will allows us to solve for t and s: 2 6 | x− 1

−3 2 | y
1 −3 | z + 1

 →

 1 3 | x−1
2

−3 2 | y
1 −3 | z + 1

 →

 1 3 | x−1
2

0 11 | 3
2 (x− 1) + y

0 −6 | − 1
2 (x− 1) + (z + 1)

 →

 1 3 | x−1
2

0 1 | 3
22 (x− 1) + 1

11y
0 −1 | − 1

12 (x− 1) + 1
6 (z + 1)

 →

 1 3 | x−1
2

0 1 | 3
22 (x− 1) + 1

11y
0 0 | 7

132 (x− 1) + 1
11y + 1

6 (z + 1)


Thus, for the system to be solvable for t and s, the third row must
be a row of zeros. We therefore get the equation

7
132

(x− 1) +
1
11

y +
1
6
(z + 1) = 0

or
7(x− 1) + 12(y − 0) + 22(z + 1) = 0.

This is the equation of the plane. �

In general, the equation

a(x− xo) + b(y − yo)c(z − zo) = 0

represents a plain in R3 through the point P (xo, yo, zo). We will see in a later
section that a, b and c are the components of a vector perpendicular to the
plane.
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2.3 Dot Product and Euclidean Norm

Definition 2.3.1. Given vectors v =


x1

x2

...
xn

 and w =


y1

y2

...
yn

 , the inner

product or dot product, of v and w is the real number (or scalar), denoted by
v · w, obtained as follows

v · w = vT w =
(
x1 x2 · · · xn

)


y1

y2

...
yn

 = x1y1 + x2y2 + · · ·+ xnyn.

The superscript T in the above definition indicates that the column vector
v has been transposed into a row vector.

The inner or dot product defined above satisfies the following properties
which can be easily checked:

(i) Symmetry: v · w = w · v

(ii) Bi-Linearity: (c1v1 + c2v2) · w = c1v1 · w + c2v2 · w, for scalars c1 and c2;
and

(iii) Positive Definiteness: v · v > 0 for all v ∈ Rn and v · v = 0 if and only if v
is the zero vector.

Given an inner product in a vector space, we can define a norm as follows.

Definition 2.3.2 (Euclidean Norm in Rn). For any vector v ∈ Rn, its Euclidean
norm, denoted ‖v‖, is defined by

‖v‖ =
√

v · v.

Observe that, by the positive definiteness of the inner product, this definition
makes sense. Note also that we have defined the norm of a vector to be the
positive square root of the the inner product of the vector with itself. Thus, the
norm of any vector is always non–negative.

If P is a point in Rn with coordinates (x1, x2, . . . , xn), the norm of the vector
−−→
OP that goes from the origin to P is the distance from P to the origin; that is,

dist(O,P ) = ‖
−−→
OP‖ =

√
x2

1 + x2
2 + · · ·+ x2

n.

If P1(x1, x2, . . . , xn) and P2(y1, y2, . . . , yn) are any two points in Rn, then the
distance from P1 to P2 is given by

dist(P1, P2) = ‖
−−→
OP2 −

−−→
OP2‖ =

√
(y1 − x1)2 + (y2 − x2)2 + · · ·+ (yn − xn)2.

As a consequence of the properties of the inner product, we obtain the fol-
lowing properties of the norm:
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Proposition 2.3.3 (Properties of the Norm). Let v denote a vector in Rn and
c a scalar. Then,

(i) ‖v‖ > 0 and ‖v‖ = 0 if and only if v is the zero vector.

(ii) ‖cv‖ = |c|‖v‖.

We also have the following very important inequality

Theorem 2.3.4 (The Cauchy–Schwarz Inequality). Let v and w denote vectors
in Rn; then,

|v · w| 6 ‖v‖‖w‖.

Proof. Consider the function f : R → R given by

f(t) = ‖v + tw‖2 for all t ∈ R.

Using the definition of the norm, we can write

f(t) = (v + tw) · (v + tw).

We can now use the properties of the inner product to expand this expression
and get

f(t) = ‖v‖2 + 2tv · w + t2‖w‖2.

Thus, f(t) is a quadratic polynomial in t which is always non–negative. There-
fore, it can have at most one real root. It then follows that

(2v · w)2 − 4‖w‖2‖v‖2 6 0,

from which we get

(v · w)2 6 ‖w‖2‖v‖2.

Taking square roots on both sides yields the inequality.

The Cauchy–Schwarz inequality, together with the properties of the inner
product and the definition of the norm, yields the following inequality known
as the Triangle Inequality.

Proposition 2.3.5 (The Triangle Inequality). For any v and w in Rn,

‖w + w‖ 6 ‖v‖+ ‖w‖.

Proof. This is an Exercise.



2.4. ORTHOGONALITY AND PROJECTIONS 13

2.4 Orthogonality and Projections

We begin this section with the following geometric example.

Example 2.4.1 (Distance from a point to a line). Let v denote a non–zero
vector in Rn; then, span{v} is a line through the origin in the direction of v.
Given a point P in R3 which is not on the span of v, we would like to find the
distance from P to the line; in other words, the shortest distance from P to any
point on the line. There are two parts to this problem:

• first, locate the point, tv, on the line that is closest to P , and

• second, compute the distance from that point to P .

Figure 2.4.1 shows a sketch of the line in R3 representing span{v}.

�
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������:
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Figure 2.4.1: Line in R3

To do this, we first let w =
−−→
OP denote the vector from the origin to P (see

sketch in Figure 2.4.1), and define the function

f(t) = ‖w − tv‖2 for any t ∈ R;

that is, f(t) is the square of the distance from P to any point on the line through
O in the direction of v. We wish to minimize this function.

Observe that f(t) can be written in terms of the dot product as

f(t) = (w − tv) · (w − tv),

which can be expanded by virtue of the properties of the inner product and the
definition of the Euclidean norm into

f(t) = ‖w‖2 − 2tv · w + t2‖v‖2.
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Thus, f(t) is a quadratic polynomial in t which can be shown to have an absolute
minimum when

t =
v · w
‖v‖2

.

Thus, the point on span{v} which is closest to P is the point
v · w
‖v‖2

v,

where w =
−−→
OP .

The distance form P to the line (i.e., the shortest distance) is then∥∥∥∥v · w
‖v‖2

v − w

∥∥∥∥ .

Remark 2.4.2. The argument of the previous example can be used to show that
the point on the line −−→

OPo + span{v},
for a given point Po, is

−−→
OPo +

v · w
‖v‖2

v,

where w =
−−→
PoP , and the distance from P to the line is∥∥∥∥−−→OPo +

v · w
‖v‖2

v − w

∥∥∥∥ .

Definition 2.4.3 (Orthogonality). Two vectors v and w in Rn are said to be
orthogonal, or perpendicular, if

v · w = 0.

Definition 2.4.4 (Orthogonal Projection). The vector
v · w
‖v‖2

v

is called the orthogonal projection of w onto v. We denote it by Pv(w). Thus,

Pv(w) =
(v · w)
‖v‖2

v.

Pv(w) is called the orthogonal projection of w =
−−→
OP onto v because it lies

along a line through P which is perpendicular to the direction of v. To see why
this is the case compute

(Pv(w)− w) · Pv(w) = ‖Pv(w)‖2 − Pv(w) · w

=
(v · w)2

‖v‖2
− v · w
‖v‖2

v · w

=
(v · w)2

‖v‖2
− (v · w)2

‖v‖2

= 0.
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Thus, Pv(w) is perpendicular to the line connecting P to Pv(w).
By the previous calculation we also see that any vector w can be written as

w = Pv(w) + (w − Pv(w));

that is, the sum of a vector parallel to v and another vector perpendicular to v.
This is known as the orthogonal decomposition of w with respect to v.

Definition 2.4.5 (Unit Vectors). A vector u ∈ Rn is said to be a unit vector
is ‖u‖ = 1; that is, u has unit length.

If u is a unit vector in Rn, then the orthogonal projection of w ∈ Rn onto u
is given by

Pu(w) = (w · u)u.

We call this vector the orthogonal component of w in the direction of u.
If v is a non–zero vector in Rn, we can scale v to obtain a unit vector in the

direction of v as follows
1
‖v‖

v.

Denote this vector by v̂; then, v̂ =
1
‖v‖

v and

‖v̂‖ =
∥∥∥∥ 1
‖v‖

v

∥∥∥∥ =
1
‖v‖

‖v‖ = 1.

As a convention, we will always try to denote unit vectors in a given direction
with a hat upon the symbol for the direction vector.

Example 2.4.6. The vectors î =

1
0
0

 , ĵ =

0
1
0

 , and k̂ =

0
0
1

 are unit

vectors in R3. Observe also that they are mutually orthogonal; that is

î · ĵ = 0, î · k̂ = 0, and ĵ · k̂ = 0.

Note also that every vector v in R3 can be written us

v = (v · î)̂i + (v · ĵ)ĵ + (v · k̂)k̂.

This is known as the orthogonal decomposition of v with respect to the basis
{̂i, ĵ, k̂} in R3.

Example 2.4.7 (Normal Direction to a Plane in R3). The equation of a plane
in R3 is given by

ax + by + cz = d

where a, b, c and d are real constants.
Suppose that Po(xo, yo, zo) is a point on the plane. Then,

axo + byo + czo = d. (2.1)
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Similarly, if P (x, y, y) is another point on the plane, then

ax + by + c = d. (2.2)

Subtracting equation (2.1) from equation (2.2) we then obtain that

a(x− xo) + b(y − yo) + c(z − zo) = 0.

This is the general equation of a plane derived in a previous example. This
equation can be interpreted as saying that the dot product of the vector

n =

a
b
c


with the vector

−−→
PoP =

x− xo

y − yo

z − zo


is zero. Thus the vector n is orthogonal, or perpendicular, to any vector lying
on the plane. We then say that n is normal vector to the plane. In the next
section we will see how to obtain a normal vector to the plane determined by
three non–collinear points.

2.5 The Cross Product in R3

We begin this section by first showing how to compute the area of parallelogram
determined by two linearly independent vectors in R2.

Example 2.5.1 (Area of a Parallelogram). Let v and w denote two linearly
independent vectors in R2 given by

v =
(

a1

a2

)
and w =

(
b1

b2

)
.

Figure 2.5.2 shows shows a sketch of the arrows representing v and w for the
special case in which they lie in the first quadrant of the xy–plane.

We would like to compute the area of the parallelogram, P (v, w), determined
by v and w. This may be computed as follows:

area(P (v, w)) = ‖v × w‖ = ‖v‖h,

where h may be obtained as ‖w − Pv(w)‖; that is, the distance from w to its
orthogonal projection along v. Squaring both sides of the previous equation we
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Figure 2.5.2: Vectors v and w on the xy–plane

have that

(area(P (v, w)))2 = ‖v‖2‖w − Pv(w)‖2

= ‖v‖2(w − Pv(w)) · (w − Pv(w))

= ‖v‖2(‖w‖2 − 2w · Pv(w) + ‖Pv(w)‖2)

= ‖v‖2

(
‖w‖2 − 2w · (v · w)

‖v‖2
v +

(v · w)2

‖v‖2

)

= ‖v‖2

(
‖w‖2 − 2

(v · w)
‖v‖2

w · v +
(v · w)2

‖v‖2

)

= ‖v‖2

(
‖w‖2 − 2

(v · w)2

‖v‖2
+

(v · w)2

‖v‖2

)
= ‖v‖2‖w‖2 − (v · w)2.
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Writing this in terms of the coordinates of v and w we then have that

(area(P (v, w)))2 = ‖v‖2‖w‖2 − (v · w)2

= (a2
1 + a2

2)(b
2
1 + b2

2)− (a1b1 + a2b2)2

= a2
1b

2
1 + a2

1b
2
2 + a2

2b
2
1 + a2

2b
2
2 − (a2

1b
2
1 + 2a1b1a2b2 + a2

2b
2
2)

= a2
1b

2
2 + a2

2b
2
1 − 2a1b1a2b2

= a2
1b

2
2 − 2(a1b2)(a2b1) + a2

2b
2
1

= (a1b2 − a2b1)2.

Taking square roots on both sides, we get

area(P (v, w)) = |a1b2 − a2b1|.

Observe that the expression in the absolute value on the right-hand side of the
previous equation is the determinant of the matrix:(

a1 b1

a2 b2

)
.

We then have that the area of the parallelogram determined by v and w is
the absolute value of the determinant of a 2× 2 matrix whose columns are the
vectors v and w. If we denote the matrix by [v w], then we obtain the formula

area(P (v, w)) = |det([v w])|.

Observe that this formula works even in the case in which v and w are not
linearly independent. In this case we get that the area of the parallelogram
determined by the two vectors is 0.

2.5.1 Defining the cross–product

Given two linearly independent vectors, v and w, in R3, we would like to asso-
ciate to them a vector, denoted v × w and called the cross product of v and w,
satisfying the following properties:

• v × w is perpendicular to the plane spanned by v and w.

• There are two choices for a perpendicular direction to the span of v and
w. The direction for v×w is determined according to the so called “right–
hand rule”:

With the fingers of your right hand, follow the direction of v
while curling them towards the direction of w. The thumb will
point in the direction of v × w.
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• The norm of v × w is the area of the parallelogram, P (v, w), determined
by the vectors v and w.

These properties imply that the cross product is not a symmetric operation;
in fact, it is antisymmetric:

w × v = −v × w for all v, w ∈ R3.

From this property we immediately get that

v × v =
−→
0 for all v ∈ R3.

Putting the properties defining the cross product together we get that

v × w = ±area(P (v, w))n̂,

where n̂ is a unit vector perpendicular to the plane determines by v and w, and
the sign is determined by the right hand rule.

In order to compute v×w, we first consider the special case in which v and
w lie along the xy–plane. More specifically, suppose that

v =

a1

a2

0

 and w =

b1

b2

0

 .

Figure 2.5.3 shows the situation in which v and w lie on the first quadrant of
the xy–plane.

x

y

�
���

��*

�
�
�
�
�
�
�
�
��

v

w

a1b1

a2

b2
��

��
��

��

�
�

�
�

�
�

�
�

A
A
A
A
A
A

h

Figure 2.5.3: Vectors v and w on the xy–plane

For the situation shown in the figure, v×w is in the direction of k̂ =

0
0
1

 .

We then have that
v × w = area(P (v, w))k̂,
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where the area of the parallelogram P (v, w) is computed as in Example 2.5.1 to
obtain

area(P (v, w)) =
∣∣∣∣det

(
a1 b1

a2 b2

)∣∣∣∣
It turns out that putting the columns in the matrix in the order that we did
takes into account the sign convention dictated by the right–hand–rule. We
then have that

v × w = det
(

a1 b1

a2 b2

)
k̂.

In order to simplify notation, we will write
∣∣∣∣a1 b1

a2 b2

∣∣∣∣ for det
(

a1 a2

b1 b2

)
. Thus,

v × w =
∣∣∣∣a1 b1

a2 b2

∣∣∣∣ k̂.

Observe that, since the determinant of the transpose of a matrix is the same
as that of the matrix, we can also write

v × w =
∣∣∣∣a1 a2

b1 b2

∣∣∣∣ k̂, (2.3)

for vectors

v =

a1

a2

0

 and w =

b1

b2

0


lying in the xy–plane.

In general, the cross product of the vectors

v =

a1

a2

a3

 and w =

b1

b2

b3


in R3 is the vector

v × w =
∣∣∣∣a2 a3

b2 b3

∣∣∣∣ î−
∣∣∣∣a1 a3

b1 b3

∣∣∣∣ ĵ +
∣∣∣∣a1 a2

b1 b2

∣∣∣∣ k̂, (2.4)

where î =

1
0
0

 , ĵ =

0
1
0

 , and k̂ =

0
0
1

 are the standard basis vectors in

R3.
Observe that if a3 = b3 = 0 in definition on v × w in (2.4), we recover the

expression in (2.3),

v × w =
∣∣∣∣a1 a2

b1 b2

∣∣∣∣ k̂

for the cross product of vectors lying entirely in the xy–plane.
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2.5.2 Triple Scalar Product

To understand why the expression for the cross product in (2.4) must have a
minus sign by the second component of the vector, note that

v · (v × w) = a1

∣∣∣∣a2 a3

b2 b3

∣∣∣∣− a2

∣∣∣∣a1 a3

b1 b3

∣∣∣∣ + a3

∣∣∣∣a1 a2

b1 b2

∣∣∣∣ ,

which is the co–factor expansion of the determinant∣∣∣∣∣∣
a1 a2 a3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣ ,

and this is consistent with the dot product of v and v ×w being 0 (since v ×w
must be orthogonal to v).

More generally, given three vectors

u =

c1

c2

c3

 , v =

a1

a2

a3

 and w =

b1

b2

b3


in R3, the triple scalar product of u, v and w is given by

u · (v × w) = c1

∣∣∣∣a2 a3

b2 b3

∣∣∣∣− c2

∣∣∣∣a1 a3

b1 b3

∣∣∣∣ + c3

∣∣∣∣a1 a2

b1 b2

∣∣∣∣ ,

or

u · (v × w) =

∣∣∣∣∣∣
c1 c2 c3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣ .
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Figure 2.5.4: Volume of Parallelepiped

Geometrically, the absolute value of the triple scalar product u ·(v×w) is the
volume of the parallelepiped generated by the vectors u, v and w. To see why
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this is so, denote by P (v, w, u) the parallelepiped spanned by v, w, and u, and
by P (v, w) the parallelogram spanned by v and w. Observe that the volume of
the parallelepiped drawn in Figure 2.5.4 is the area of the parallelogram spanned
by v and w times the height, h, of the parallelepiped:

volume(P (v, w, u)) = area(P (v, w)) · h, (2.5)

where h can be obtained by projecting u onto the cross–product, v × w, of v
and w; that is

h = ‖Pn(u)‖ =
∥∥∥∥ u · n
‖n‖2

n

∥∥∥∥ ,

where
n = v × w.

We then have that

h =
|u · (v × w)|
‖v × w‖

.

Consequently, since area(P (v, w)) = ‖v × w‖, we get from (2.5) that

volume(P (v, w, u)) = |u · (v × w)|.



Chapter 3

Functions

3.1 Types of Functions on Euclidean Space

Given a subset D of n–dimensional Euclidean space, Rn, we are interested in
functions that map D to m–dimensional Euclidean space, Rm, where n and m
could possibly be the same. We write

F : D → Rm

and call D the domain of F ; that is, the set where the function is defined.

Example 3.1.1. The function f given by

f(x, y) =
1√

1− x2 − y2

is defined over the set

D = {(x, y) ∈ R2 | x2 + y2 < 1},

or the open unit disc in R2. In this case, n = 2 and m = 1.

There are different types of functions that we will be studying in this course.
Some of the types have received traditional names, and we present them here.

• Vector Fields. If m = n > 1, then the map

F : D → Rn

is called a vector field on D. The idea here is that each point in D gets
assigned a vector. A picture for this is provided by a model of fluid flow
in which it point in region where fluid is flowing gets assigned a vector
giving the velocity of the flow at that particular point.

23
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• Scalar Fields. For the case in which m = 1 and n > 1, every point in
D now gets assigned a scalar (a real number). An example of this in
applications would be the temperature distribution over a region in space.
Scalar fields in this course will usually be denoted by lower case letters (f ,
g, etc.). The value of a scalar field

f : D → R

at a point P (x1, x2, . . . , xn) in D will be denoted by

f(x1, x2, . . . , xn).

If D is a region in the xy–plane, we simply write

f(x, y) for (x, y) ∈ D.

• Paths. If n = 1, m > 1 and D is an interval, I, of real line, then the map

σ : I → Rm

is called a path in Rm.

Example 3.1.2. Let σ(t) = (cos t, sin t) for t ∈ (−π, π], then

σ : (−π, π] → R2

is a path in R2. A picture of this map would a particle in the xy–plane
moving along the unit circle in the counterclockwise direction.

3.2 Open Subsets of Euclidean Space

In Example 3.1.1 we saw that the function f given by

f(x, y) =
1√

1− x2 − y2

has the open unit disc, D = {(x, y) ∈ R2 | x2 + y2 < 1}, as its domain. D is an
example of what is known as an open set.

Definition 3.2.1 (Open Balls). Given x ∈ Rn, the open ball of radius r > 0 in
Rn about x is defined to be the set

Br(x) = {y ∈ Rn | ‖y − x‖ < r}.

That is, Br(x) is the set of points in Rn which are within a distance of r from
x.

Definition 3.2.2 (Open Sets). A set U ⊆ Rn is said to be open if and only if
for every x ∈ U there exists r > 0 such that

Br(x) ⊆ U.

The empty set, ∅, is considered to be open.
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Example 3.2.3. For any R > 0, the open ball BR(O) = {y ∈ Rn | ‖y‖ < R} is
an open set.

Proof. Let x be an arbitrary point in BR(O); then ‖x‖ < R. Put r = R−‖x‖ > 0
and consider the open ball Br(x). If y ∈ Br(x), then, by the triangle inequality,

‖y‖ = ‖y − x + x‖ 6 ‖y − x‖+ ‖x‖ < r + ‖x‖ = R,

which shows that y ∈ BR(O). Consequently,

Br(x) ⊆ BR(O).

It the follows that BR(O) is open by Definition 3.2.2.

Example 3.2.4. The set A = {(x, y) ∈ R2 | y = 0} is not an open subset of
R2. To see why this is the case, observe that for any r > 0, the ball Br((0, 0)) is
is not a subset of A, since, for instance, the point (0, r/2) is in Br((0, 0)), but
it is not an element of A.

3.3 Continuous Functions

In single variable Calculus you learned that a real valued function, f : (a, b) → R,
defined in the open interval (a, b), is continuous at c ∈ (a, b) if

lim
x→c

f(x) = f(c).

We may re–write the last expression as

lim
|x−c|→0

|f(x)− f(c)| = 0.

This is the expression that we will use to generalize the notion of continuity at a
point to vector valued functions on subsets of Euclidean space. We will simply
replace the absolute values by norms.

Definition 3.3.1. Let U be an open subset of Rn and F : U → Rm be a vector–
valued map on U . F is said to be continuous at x ∈ U if

lim
‖y−x‖→0

‖F (y)− F (x)‖ = 0.

If F is continuous at every x in U , then we say that F is continuous on U .

Example 3.3.2. Let T : Rn → R be a linear transformation. Then, T is con-
tinuous on Rn.

Proof: Since T is linear, there exists a vector, w, in Rn such that

T (v) = w · v for all v ∈ Rn.
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It then follows that, for any u and v in Rn

‖T (v)− T (u)‖ = ‖w · (v − u)‖ 6 ‖w‖‖v − u‖,

by the Cauchy–Schwartz inequality. Hence, by the Squeeze (or Sandwich) The-
orem in single–variable Calculus, we obtain that

lim
‖v−u‖→0

‖T (v)− T (u)‖ = 0,

and so T is continuous at u. Since u is any element of Rn, it follows that T is
continuous on Rn.

Example 3.3.3 (Continuous Paths). Let (a, b) denote the open interval from
a to b. A path σ(a, b) → Rm, defined by

σ(t)


x1(t)
x2(t)

...
xm(t)

 , for all t ∈ (a, b),

where each xi, for i = 1, 2, . . . ,m, denotes a real valued function defined on
(a, b), is continuous if and only if each xi is continuous.

Proof. Let to denote an arbitrary element in (a, b), and consider

‖σ(t)− σ(to)‖2 =
m∑

i=1

|xi(t)− xi(to)|2.

It follows from this expression that

lim
t→to

‖σ(t)− σ(to)‖ = 0

if and only if

lim
t→to

|xi(t)− xi(to)| = 0 for each i = 1, 2, . . . ,m.

Hence, σ is continuous at to if and only if each xi : (a, b) → R is continuous at
to. Since, this is true for every to ∈ (a, b), the result follows.

A particular instance of the previous example is the path in R2 given by

σ(t) = (cos t, sin t)

for all t in some interval (a, b) of real numbers. Since the sine and cosine
functions are continuous everywhere on R, it follows that the path is continuous.



3.3. CONTINUOUS FUNCTIONS 27

3.3.1 Images and Pre–Images

Let U denote and open subset of Rn and F : U → Rm be a map.

Definition 3.3.4. Given A ⊆ U , we define the image of A under F to be the
set

F (A) = {y ∈ Rm | y = F (x) for some x ∈ U}.

Given B ⊆ Rm, we define the pre–image of B under F to be the set

F−1(A) = {x ∈ U | F (x) ∈ B}.

Example 3.3.5. Let σ : R → R2 be given by σ(t) = (cos t, sin t) for all t ∈ R.
If A = (0, 2π], then the image of A under σ is the unit circle around the origin
in the xy–plane, or

σ((0, 2π]) = {(x, y) ∈ R2 | x2 + y2 = 1}.

Example 3.3.6. Let σ be as in the previous example, and A = (0, π/2). Then,

σ(A) = {(x, y) ∈ R2 | x2 + y2 = 1, 0 < x < 1, 0 < y < 1}.

Example 3.3.7. Let D = {(x, y) ∈ R2 | x2 +y2 < 1}, the open unit disc in R2,
and f : D′ → R be given by

f(x, y) =
√

1− x2 − y2, for (x, y) ∈ D

Find the pre–image of B = {0} under f .

Solution:
f−1(0) = {(x, y) ∈ R2 | f(x, y) = 0}.

Now, f(x, y) = 0 if and only if√
1− x2 − y2 = 0

if and only if
x2 + y2 = 1.

Thus,
f−1(0) = {(x, y) ∈ R2 | x2 + y2 = 1},

or the unit circle around the origin in R2. �

3.3.2 An alternate definition of continuity

In this section we will prove the following proposition

Proposition 3.3.8. Let U denote an open subset of Rn. A map F : U → Rm

is continuous on U if and only if the pre–image of any open subset of Rm under
F is an open subset of U .
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Proof. Suppose that F is continuous on U . Then, according to Definition 3.3.1,
for every x ∈ U ,

lim
‖y−x‖→0

‖F (y)− F (x)‖ = 0.

In other words, F (y) can be made arbitrarily close to F (x) by making y suffi-
ciently close to x.

Let V denote an arbitrary open subset of Rm and consider

F−1(V ) = {x ∈ U | F (x) ∈ V }.

We claim that F−1(V ) is open. To see why this is the case, let x ∈ F−1(V ).
Then, F (x) ∈ V . Therefore, since V is open, there exists ε > 0 such that

Bε(F (x)) ⊆ V.

This implies that, any w ∈ Rn satisfying ‖w − F (x)‖ < ε is also an element of
V .

Now, by the continuity of F at x, we can make ‖F (y) − F (x)‖ < ε bay
making ‖y − x‖ sufficiently small; say, smaller than some δ > 0. It then follows
that

‖y − x‖ < δ implies that ‖F (y)− F (x)‖ < ε,

which in turn implies that F (y) ∈ V , or y ∈ F−1(V ). We then have that

y ∈ Bδ(x) implies that y ∈ F−1(V ).

In other words,
Bδ(x) ⊆ F−1(V ).

Therefore, F−1(V ) is open, an so the claim is proved.

Conversely, assume that for any open subset, V , of Rm, F−1(V ) is open. We
show that this implies that F is continuous at any x ∈ U . To see this, suppose
that x ∈ U and let ε > 0 be arbitrary. Now, since Bε(F (x)), the open ball of
radius ε around F (x), is an open subset of Rm, it follows that

F−1(Bε(F (x)))

is open, by the assumption we are making in this part of the proof. Hence, since
x ∈ F−1(Bε(F (x))), there exists δ > 0 such that

Bδ(x) ⊆ F−1(Bε(F (x))).

This is equivalent to saying that

‖y − x‖ < δ implies that y ∈ F−1(Bε(F (x))),

or
‖y − x‖ < δ implies that F (y) ∈ Bε(F (x)),
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or
‖y − x‖ < δ implies that ‖F (y)− F (x)‖ < ε.

Thus, given an arbitrary ε > 0, there exists δ > 0 such that

‖y − x‖ < δ implies that ‖F (y)− F (x)‖ < ε.

This is precisely the definition of

lim
‖y−x‖→0

‖F (y)− F (x)‖ = 0.

3.3.3 Compositions of Continuous Functions

Proposition 3.3.8 provides another definition of continuity: A map is continuous
if and only if the pre–image of any open set under the map is open. We will now
use this alternate definition prove that a composition of continuous functions is
continuous.

Let U be an open subset of Rn and Q an open subset of Rm. Suppose that
we are given two maps F : U → Rm and G : Q → Rk. Recall that in order to
define the composition of G and F , we must require that the image of U under
F is contained in the domain, Q, of G; that is,

F (U) ⊆ Q.

If this is the case, then we define the composition of G and F , denoted G ◦ F ,
by

G ◦ F (x) = G(F (x)) for all x ∈ U.

This yields a map
G ◦ F : U → Rk.

Proposition 3.3.9. Let U be an open subset of Rn and Q an open subset of Rm.
Suppose that the maps F : U → Rm and G : Q → Rk are continuous on their
respective domains and that F (U) ⊆ Q. Then, the composition G ◦ F : U → Rk

is continuous on U .

Proof. According to Proposition 3.3.8, it suffices to prove that, for any open set
V ⊆ Rk, the pre–image (G ◦F )−1(V ) is an open subset of U . Thus, let V ⊆ Rk

be open and observe that

x ∈ (G ◦ F )−1(V ) iff (G ◦ F )(x) ∈ V
iff G(F (x)) ∈ V
iff F (x) ∈ G−1(V )
iff x ∈ F−1(G−1(V )),

so that
(G ◦ F )−1(V ) = F−1(G−1(V )).
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Now, G is continuous, consequently, since V is open, G−1(V ) is an open subset
of Q by Proposition 3.3.8. Similarly, since F is continuous, it follows again
from Proposition 3.3.8 that F−1(G−1(V )) is open. Thus, (G◦F )−1(V ) is open.
Since, V was an arbitrary open subset of Rk, it follows from Proposition 3.3.8
that G ◦ F is continuous on U .

Example 3.3.10 (Evaluating scalar fields on paths). Let (a, b) denote an open
interval of real numbers and σ : (a, b) → Rn be a path. Given a scalar field
f : Rn → R, we can define the composition

f ◦ σ : (a, b) → R

by f ◦ σ(t) = f(σ(t)) for all t ∈ (a, b). Thus, f ◦ σ is a real valued function
of a single variable like those studied in Calculus I and II. An example of a
composition f ◦ σ is provided by evaluating the electrostatic potential, f , along
the path of a particle moving according to σ(t), where t denotes time.

According to Proposition 3.3.9, if both f and σ are continuous, then so is
the function f ◦σ. Therefore, if lim

t→to

σ(t) = xo for some to ∈ (a, b) and xo ∈ Rn,

then
lim
t→to

f(σ(t)) = f(xo).

The point here is that, if f is continuous at xo, the limit of f along any con-
tinuous path that approaches xo must yield the same value of f(xo).

3.3.4 Limits and Continuity

In the previous example we saw that if a scalar field, f , is continuous at a point
xo ∈ Rn, then for any continuous path σ with the property that σ(t) → xo as
t → to,

lim
t→to

f(σ(t)) = f(xo).

In other words, taking the limit along any continuous path approaching xo as
t → to must yield one, and only one, value.

Example 3.3.11. Let f : R2\{(0, 0)} → R be given by

f(x, y) =
|x|√

x2 + y2
, for (x, y) 6= (0, 0).

Show that lim
(x,y)→(0,0)

f(x, y) does not exist.

Solution: If the limit did exist, then we would be able to define f
at (0, 0) so that f was continuous there. In other words, suppose
that

lim
(x,y)→(0,0)

f(x, y) = L.
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Then, the function f̂ : R2 → R defined by

f̂(x, y) =

{
f(x, y), if (x, y) 6= (0, 0);
L, if (x, y) = (0, 0),

would be continuous on R2. Thus, for any continuous path, σ, with
the property: σ(t) → (0, 0) as t → 0, we would have that

lim
t→0

f̂(σ(t)) = f̂(0, 0) = L,

since f̂ ◦ σ would be continuous by Proposition 3.3.9.

However, if σ1(t) = (0, t) for t ∈ R, then σ1 is continuous and
σ1(t) → (0, 0) as t → 0 and

lim
t→0

f̂(σ1(t)) = 0;

while, if σ2(t) = (t, 0) for t ∈ R, then σ2 is continuous and σ2(t) →
(0, 0) as t → 0 and

lim
t→0

f̂(σ2(t)) = 1.

This yields a contradiction, and therefore

lim
(x,y)→(0,0)

|x|√
x2 + y2

cannot exist. �
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Chapter 4

Differentiability

In single variable Calculus, a real valued function, f : I → R, defined on an an
open interval I, is said to be differentiable at a point a ∈ I if the limit

lim
x→a

f(x)− f(a)
x− a

exists. If this limit exists, we denote it by f ′(a) and call it the derivative of f
at a. We then have that

lim
x→a

f(x)− f(a)
x− a

= f ′(a).

The last expression is equivalent to

lim
x→a

∣∣∣∣f(x)− f(a)
x− a

− f ′(a)
∣∣∣∣ = 0,

which we can re–write as

lim
x→a

|f(x)− f(a)− f ′(a)(x− a)|
|x− a|

= 0. (4.1)

Expression (4.1) had the familiar geometric interpretation learned in Calculus
I: If f is differentiable at a, the the graph of y = f(x) can be approximated by
that of the tangent line,

La(x) = f(x) + f ′(a)(x− a) for all x ∈ R,

in the sense that, if
Ea(x− a) = f(x)− La(x)

is the error in the approximation, then

lim
x→a

|Ea(x− a)|
|x− a|

= 0;

33
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that is the error in the linear approximation to f at a goes to 0 more rapidly
than |x− a| goes to 0 as x gets closer to a.

If we are interested in differentiability of f at a variable point x ∈ I, and
not a fixed point a, then we can rewrite (4.1) more generally as

lim
y→x

|f(y)− f(x)− f ′(x)(y − x)|
|y − x|

= 0,

or

lim
|y−x|→0

|f(y)− f(x)− f ′(x)(y − x)|
|y − x|

= 0. (4.2)

The limit expression in (4.2) is the one we are going to be able to extend to
higher dimensions for a vector–valued function F : U → Rm defined on an open
subset, U , of Rn. The symbols x and y will represent vectors in U , and the
absolute values will turn into norms. To see how the expression f ′(x)(y−x) can
be generalized to higher dimensions, let f ′(x) = mx, the slope of the tangent
line to the graph of f at x, and y = x + w; then,

f(x + w)− f(x) = mxw + Ex(w),

where

lim
w→0

|Ea(w)|
|w|

= 0.

Observe that the map
w 7→ mxw

defines a linear map from R to R. We then conclude that if f is differentiable at
x, there exists a linear map such that the linear map approximates the difference
f(x + w) − f(x) in the sense that the error in the approximation goes to 0 as
w → 0 at a faster rate than |w| approaches 0. This notion of using linear
maps to approximate functions locally is the key to extending the concept of
differentiability to higher dimensions.

4.1 Definition of Differentiability

Definition 4.1.1 (Differentiability). Let U denote an open subset of Rn and
F : U → Rm be a vector–valued map defined on U . F is said to be differentiable
at x ∈ U if and only if there exists a linear transformation Tx : Rn → Rm such
that

lim
‖y−x‖→0

‖F (y)− F (x)− Tx(y − x)‖
‖y − x‖

= 0. (4.3)

Thus, F is differentiable at x ∈ U iff it can be approximated by a linear
function for values sufficiently close to x.

Rewrite the expression in (4.3) by putting y = x+w, then F is differentiable
at x ∈ U iff there exists a linear transformation Tx : Rn → Rm such that

lim
‖w‖→0

‖F (x + w)− F (x)− Tx(w)‖
‖w‖

= 0. (4.4)
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We can also say that F : U → Rm is differentiable at x ∈ U iff there exists a
linear transformation Tx : Rn → Rm such that

F (x + w) = F (x) + Tx(w) + Ex(w), (4.5)

where Ex(w), the error term, has the property that

lim
‖w‖→0

‖Ex(w)‖
‖w‖

= 0. (4.6)

4.2 The Derivative

Proposition 4.2.1 (Uniqueness of the Linear Approximation). Let U denote
an open subset of Rn and F : U → Rm be a map. If F is differentiable at x ∈ U ,
then the linear transformation, Tx, given in Definition 4.1.1 is unique.

Proof. Suppose there is another linear transformation, T : Rn → Rm, given
by Definition 4.1.1 in addition to Tx. We show that T and Tx are the same
transformation.

From (4.5) and (4.6) we get that

F (x + w) = F (x) + Tx(w) + Ex(w),

where

lim
‖w‖→0

‖Ex(w)‖
‖w‖

= 0.

Similarly,
F (x + w) = F (x) + T (w) + E(w),

where

lim
‖w‖→0

‖E(w)‖
‖w‖

= 0.

It then follows that

T (w) + E(w) = Tx(w) + Ex(w) (4.7)

for all w ∈ Rn sufficiently close to
−→
0 .

Let û denote a unit vector and put w = tû in (4.7) for t ∈ R sufficiently close
to 0. Then, by the linearity of T and Tx,

tT (û) + E(tû) = tTx(û) + Ex(tû).

Dividing by t 6= 0 we get

T (û) +
E(tû)

t
= Tx(û) +

Ex(tû)
t

. (4.8)

Next, observe that

lim
|t|→0

‖Ex(tû)‖
|t|

= lim
‖tû‖→0

‖Ex(tû)‖
‖tû‖

= 0
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by (4.6). Similarly,

lim
|t|→0

‖E(tû)‖
|t|

= 0.

Thus, letting t → 0 in (4.8) we get that

T (û) = T (û).

Hence T agrees with Tx on any unit vector û. Therefore, T and Tx agree on the
standard basis {e1, e2, . . . , en} of Rn. Consequently, since T and Tx are linear

T (v) = Tx(v) for all v ∈ Rn;

that is, T and Tx are the same transformation.

Proposition 4.2.1 allows as to talk about the derivative of F at x.

Definition 4.2.2 (Derivative of a Map). Let U denote an open subset of Rn

and F : U → Rm be a map. If F is differentiable at x ∈ U , then the unique
linear transformation, Tx, given in Definition 4.1.1 is called the derivative of F
at x and is denoted by DF (x). We then have that if F is differentiable at x ∈ U ,
there exists a unique linear transformation, DF (x) : Rn → Rm, such that

F (x + w) = F (x) + DF (x)w + Ex(w),

where

lim
‖w‖→0

‖Ex(w)‖
‖w‖

= 0.

4.3 Example: Differentiable Scalar Fields

Let U denote an open subset of Rn and let f : U → R be a scalar field on U . If
f is differentiable at x ∈ U , there exists a unique linear map Df(x) : Rn → R
such that

f(x + w) = f(x) + Df(x)w + Ex(w) (4.9)

for w ∈ Rn with sufficiently small norm, ‖w‖, where

lim
‖w‖→0

|Ex(w)|
‖w‖

= 0. (4.10)

Now, since Df(x) is a linear map from Rn to R, there exists an n–row vector

v = [ a1 a2 · · · an ]

such that
Df(x)w = v · w for all w ∈ Rn; (4.11)

that is, Df(x)w is the dot–product of v an w. We would like to know what the
differentiability of f implies about the components of the vector v.
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Apply (4.9) to the case in which w = têj , where t ∈ R is sufficiently close to
0 and êj is the jth vector in the standard basis for Rn, to get that

f(x + têj) = f(x) + Df(x)(têj) + Ex(têj). (4.12)

Using the linearity of Df(x) and (4.11) we get from (4.12) that

f(x + têj)− f(x) = tv · êj + Ex(têj).

Dividing by t 6= 0 we then get that

f(x + têj)− f(x)
t

= aj +
Ex(têj)

t
. (4.13)

It follows from (4.10) that

lim
t→0

|Ex(têj)|
|t|

= lim
|t|→0

|Ex(têj)|
‖têj‖

= 0,

and therefore, we get from (4.13) that

lim
t→0

f(x + têj)− f(x)
t

= aj . (4.14)

Definition 4.3.1 (Partial Derivatives). Let U be an open subset of Rn,

f : U → R

denote a scalar field, and x ∈ U . If

lim
t→0

f(x + têj)− f(x)
t

exists, we call it the partial derivative of f at x with respect to xj and denote

it by
∂f

∂xj
(x).

The argument leading up to equation (4.14) then shows that if the scalar
field f : U → R is differentiable at x ∈ U , then its partial derivatives at x exist
and they are the components of the matrix representation of the linear map
Df(x) : Rn → R with respect to the standard basis in Rn:

[Df(x)] =
[

∂f

∂x1
(x)

∂f

∂x2
(x) · · · ∂f

∂xn
(x)

]
.

Definition 4.3.2 (Gradient). Suppose that the partial derivatives of a scalar
field f : U → R exist at x ∈ U . The expression[

∂f

∂x1
(x)

∂f

∂x2
(x) · · · ∂f

∂xn
(x)

]
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is usually written as a row vector(
∂f

∂x1
(x),

∂f

∂x2
(x), . . . ,

∂f

∂xn
(x)

)
is called the gradient of f at x. The gradient of f at x is denoted by the symbol
∇f(x). We then have that

∇f(x) =
(

∂f

∂x1
(x),

∂f

∂x2
(x), . . . ,

∂f

∂xn
(x)

)
,

or, in terms of the standard basis in Rn,

∇f(x) =
∂f

∂x1
(x) ê1 +

∂f

∂x2
(x) ê2 + · · ·+ ∂f

∂xn
(x) ên.

Example 4.3.3. Let f : R2 → R be given by

f(x, y) =

e
− 1

x2 + y2 if (x, y) 6= (0, 0)
0 if (x, y) 6= (0, 0).

Compute the partial derivatives of f and its gradient. Is f differentiable at
(0, 0)?

Solution: According to Definition 4.3.1,

∂f

∂x
(x, y) = lim

t→0

f(x + t, y)− f(x, y)
t

.

Thus, we compute the rate of change of f as x changes while y is
fixed. For the case in which (x, y) 6= (0, 0), we may compute ∂f/∂x
as follows:

∂f

∂x
(x, y) = ∂

∂x

e
− 1

x2 + y2


= e

− 1
x2 + y2 · ∂

∂x

(
− 1

x2 + y2

)

= e
− 1

x2 + y2 · 2x

(x2 + y2)2

=
2x

(x2 + y2)2
· e
− 1

x2 + y2
.

That is, we took the one dimensional derivative with respect to x
and thought of y as a constant (or fixed with respect to x). Notice
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that we used the Chain Rule twice in the previous calculation. A
similar calculation shows that

∂f

∂x
(x, y) =

2y

(x2 + y2)2
· e
− 1

x2 + y2

for (x, y) 6= (0, 0).

To compute the partial derivatives at (0, 0), we must compute the
limit in Definition 4.3.1. For instance,

∂f

∂x
(0, 0) = lim

t→0

f(t, 0)− f(0, 0)
t

= lim
t→0

e
− 1

t2

t

= lim
t→0

1/t

e1/t2
.

Applying L’Hospital’s Rule we then have that

∂f

∂x
(0, 0) = lim

t→0

1/t2

2/t3e1/t2

=
1
2

lim
t→0

t

e1/t2

= 0.

Similarly,
∂f

∂y
(0, 0) = 0. It then follows that

∇f(0, 0) = (0, 0),

or the zero vector, and, for (x, y) 6= (0, 0),

∇f(x, y) =
2e
− 1

x2 + y2

(x2 + y2)2
(x, y),

or

∇f(x, y) =
2e
− 1

x2 + y2

(x2 + y2)2
(x î + y ĵ).

To show that f is differentiable at (0, 0), we show that

f(x, y) = f(0, 0) + T (x, y) + E(x, y),
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where

lim
(x,y)→(0,0)

|E(x, y)|√
x2 + y2

= 0,

and T is the zero linear transformation from R2 to R.

In this case

E(x, y) = e
− 1

x2 + y2 if (x, y) 6= (0, 0).

Thus, for (x, y) 6= (0, 0),

|E(x, y)|√
x2 + y2

=
e
− 1

x2 + y2√
x2 + y2

=
e
− 1

u2

u
,

where we have set u =
√

x2 + y2. Thus,

lim
(x,y)→(0,0)

|E(x, y)|√
x2 + y2

= lim
u→0

e
− 1

u2

u
= 0,

by the same calculation involving L’Hospital’s Rule that was used to
compute ∂f/∂x at (0, 0). Consequently, f is differentiable at (0, 0)
and its derivative is the zero map. �

We have seen that if a scalar field f : U → R is differentiable at x ∈ u, then

f(x + w) = f(x) +∇f(x) · w + Ex(w)

for all w ∈ Rn with sufficiently small norm, ‖w‖, where ∇f(x) is the gradient
of f at x ∈ U , and

lim
‖w‖→0

|Ex(w)|
‖w‖

= 0.

Applying this to the case where w = tû, for a unit vector û, we get that

f(x + tû)− f(x) = t∇f(x) · û + Ex(tû)

for t ∈ R sufficiently close to 0. Dividing by t 6= 0 and letting t → 0 leads to

lim
t→0

f(x + tû)− f(x)
t

= ∇f(x) · û,

where we have used (4.10).

Definition 4.3.4 (Directional Derivatives). Let f : U → R denote a scalar field
defined on an open subset U of Rn, and let û be a unit vector in Rn. If the limit

lim
t→0

f(x + tû)− f(x)
t

exists, we call it the directional derivative of f at x in the direction of the unit
vector û. We denote it by Dûf(x).
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We have then shown that if the scalar field f is differentiable at x, then its
directional derivative at x in the direction of a unit vector û is given by

Dûf(x) = ∇f(x) · û;

that is, the dot–product of the gradient of f at x with the unit vector û. In
other words, the directional derivative on f at x in the direction of a unit vector
û is the component of the orthogonal projection of ∇f(x) along the direction of
û.

4.4 Example: Differentiable Paths

Example 4.4.1. Let I denote an open interval in R, and suppose that the path
σ : I → Rn is differentiable at t ∈ I. It then follows that there exists a linear
map Dσ(t)R → Rn such that

σ(t + h)− σ(t) = Dσ(t)(h) + Et(h), (4.15)

where

lim
h→0

‖Et(h)‖
|h|

= 0. (4.16)

(a) Show that the linear map Dσ(t)R → Rn is of the form

Dσ(t)(h) = hv(t) for all h ∈ R,

where the vector v(t) is obtained from

v(t) = Dσ(t)(1);

that is, v(t) is the image of the real number 1 under the linear transforma-
tion Dσ(t).

Solution: Let h denote any real number; then, by the linearity
of Dσ(t),

Dσ(t)(h) = Dσ(t)(h · 1) = hDσ(t)(1) = hv.

�

(b) Write σ(t) = (x1(t), x2(t), . . . , xn(t)) for all t ∈ I, and

v(t) = (v1(t), v2(t), . . . , vn(t))

for all t ∈ I. Show that if σ : I → Rn is differentiable at t ∈ I and v =
Dσ(t)(1), then each function xj : I → R, for j = 1, 2, . . . , n, is differentiable
at t, and

x′j(t) = vj(t).
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Solution: Writing σ and v(t) as a column vector, equation (4.15)
takes the form

x1(t + h)
x2(t + h)

...
xn(t + h)

−


x1(t)
x2(t)

...
xn(t)

 = h


v1(t)
v2(t)

...
vn(t)

 + Et(h),

or, after division by h 6= 0,

x1(t + h)− x1(t)
h

x2(t + h)− x2(t)
h
...

xn(t + h)− xn(t)
h


=


v1(t)
v2(t)

...
vn(t)

 +
Et(h)

h
.

It then follows from (4.16) that

lim
h→0

xj(t + h)− xj(t)
h

= vj(t) for each j = 1, 2, . . . n,

which shows that each vj : I → R is differentiable at t with

x′j(t) = vj(t)

for each j = 1, 2, . . . , n. �

Notation: If σ : I → Rn is differentiable at every t ∈ I, the vector valued
function v : I → Rn given by v(t) = Dσ(t)(1) is called the velocity of the path
σ, and is usually denoted by σ′(t). We then have that

Dσ(t)(h) = hσ′(t) for all h ∈ R

and all t at which the path σ is differentiable. We can then re–write (4.15) as

σ(t + h) = σ(t) + hσ′(t) + Et(h).

Re–writing this expression once more, by replacing t by to and t + h by t, we
have that

σ(t) = σ(to) + (t− to)σ′(to) + Eto
(t− to). (4.17)

where

lim
t→to

‖Eto
(t− to)‖
|t− to|

= 0. (4.18)

The expression
σ(to) + (t− to)σ′(to)

in (4.17) gives the vector–parametric equation of a straight line through σ(to)
in the direction of the velocity vector, σ′(to), of the path σ(t) at the to. Thus,
(4.17) and (4.18) yield the following interpretation of differentiability of a path
σ(t) at to:
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If a path σ : I → Rn is differentiable at the to, then it can be ap-
proximated by a straight line through σ(to) in the direction of the
velocity vector σ′(to).

Definition 4.4.2 (Tangent line to a path). The straight line given perimetrically
by the vector equation

r(t) = σ(to) + (t− to)σ′(to) for t ∈ R

is called the the tangent line to the path σ(t) and the point σ(to).

Example 4.4.3. Give the tangent line to the path

σ(t) = (cos t, t, sin t) for t ∈ R

when to = π/4.

Solution: The equation of the tangent line is given by

r(t) = σ(to) + (t− to)σ′(to),

where σ′(t) = (− sin t, 1, cos t); so that, for to = π/4, we get that

r(t) =
(√

2
2

,
π

4
,

√
2

2

)
+

(
t− π

4

) (
−
√

2
2

, 1,

√
2

2

)
for t ∈ R.

Writing (x, y, z) for the vector r(t), we obtain the parametric equa-
tions for the tangent line:

x =
√

2
2 −

√
2

2

(
t− π

4

)
y = π

4 + t

z =
√

2
2 +

√
2

2

(
t− π

4

)
�

4.5 Sufficient Condition for Differentiability

4.5.1 Differentiability of Paths

Let I be an open interval of real numbers and σ : I → Rn denote a path in

Rn. Write σ(t) =


x1(t)
x2(t)

...
xn(t)

 , for all t ∈ I and suppose that the functions

x1(t), x2(t), . . . , xn(t) are all differentiable in I. We show that if, in addition,
the derivatives x′1(t), x

′
2(t), . . . , x

′
n(t) are continuous on I, then the path σ is

differentiable according to Definition 4.1.1.
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Let t ∈ I and h ∈ R be such that t + h ∈ I. By the Mean Value Theorem,
for each j = 1, 2, . . . n, there exists τj(h) in the interval (t, t + h), or (t + h, h)
(depending on whether h is positive or negative, respectively), such that

xj(t + h)− xj(t) = hx′j(τj(h)) for j = 1, 2, . . . , n. (4.19)

Observe that τj(h) → t as h → 0, for j = 1, 2, . . . , n. Consequently, by the
continuity of the derivatives, x′j ,

lim
h→0

x′j(τj(h)) = x′j(t) for j = 1, 2, . . . , n. (4.20)

Consider now

σ(t + h)− σ(t)− hσ′(t) =


x1(t + h)− x1(t)− hx′1(t)
x2(t + h)− x2(t)− hx′2(t)

...
xn(t + h)− xn(t)− hx′n(t)



=


hx′1(τ1(h))− hx′1(t)
hx′2(τ2(h))− hx′2(t)

...
hx′n(τn(h))− hx′n(t)

 ,

where we have used (4.19). It then follows that, for h 6= 0 and |h| small enough,

1
h

(σ(t + h)− σ(t)− hσ′(t)) =


x′1(τ1(h))− x′1(t)
x′2(τ2(h))− x′2(t)

...
x′n(τn(h))− x′n(t)

 .

Taking the square of the norm on both sides we get that

‖σ(t + h)− σ(t)− hσ′(t)‖2

|h|2
=

n∑
j=1

|x′j(τj(h))− x′j(t)|2.

Hence, by virtue of (4.20),

lim
h→0

‖σ(t + h)− σ(t)− hσ′(t)‖
|h|

= 0,

which shows that σ is differentiable at t.

4.5.2 Differentiability of Scalar Fields

Let U denote an open subset of Rn and f : U → R be a scalar field defined on
U . Suppose also that the partial derivatives of f ,

∂f

∂x1
(x),

∂f

∂x2
(x), . . . ,

∂f

∂xn
(x),
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exist for all x ∈ U . In a manner analogous to that of the previous section, we
show in this section that, if the partial derivatives of f are continuous on U ,
then the scalar field f is differentiable according to Definition 4.1.1.

Observe that ∇f defines a map from U to Rn by

∇f(x) =
(

∂f

∂x1
(x),

∂f

∂x2
(x), . . . ,

∂f

∂xn
(x)

)
for all x ∈ U.

Note that, if the partial derivatives of f are continuous on U , then the vector
field

∇f : U → Rn

is a continuous map.

Proposition 4.5.1. Let U denote an open subset of Rn and f : U → R be a
scalar field defined on U . Suppose that the partial derivatives of f are continuous
on U . Then the scalar field f is differentiable.

Proof: We present the proof here for the case n = 2. In this case we may write

∇f(x, y) =


∂f

∂x
(x, y)

∂f

∂y
(x, y)

 ,

where we are assuming that the functions
∂f

∂x
and

∂f

∂y
are continuous on U .

Let (x, y) ∈ U ; then, since U is open, there exists r > 0 such that Br(x, y) ⊆
U . It then follows that, for (h, k) ∈ Br(0, 0), (x + h, y + k) ∈ U . For (h, k) ∈
Br(0, 0) we define

E(h, k) = f(x + h, y + k)− f(x, y)−∇f(x, y) · (h, k). (4.21)

We prove that

lim
(h,k)→(0,0)

|E(h, k)|√
h2 + k2

= 0 (4.22)

Assume that h > 0 and k > 0 (the other cases can be treated in an analogous
manner). By the mean value theorem, there are real numbers θ and η such that
0 < θ < 1 and 0 < η < 1 and

f(x + h, y + k)− f(x, y + k) =
∂f

∂x
(x + θh, y + k) · h,

and
f(x, y + k)− f(x, y) =

∂f

∂y
(x, y + ηk) · k.

Consequently,

f(x + h, y + k)− f(x, y) =
∂f

∂x
(x + θh, y + k) · h +

∂f

∂y
(x, y + ηk) · k.
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Thus, in view of (4.21), we see that

E(h, k) =
(

∂f

∂x
(x + θh, y + k)− ∂f

∂x
(x, y)

)
h +

(
∂f

∂y
(x, y + ηk)− ∂f

∂x
(x, y)

)
k.

Thus, E(h, k) is the dot product of the vector v(h, k), given by

v(h, k) =
(

∂f

∂x
(x + θh, y + k)− ∂f

∂x
(x, y),

∂f

∂y
(x, y + ηk)− ∂f

∂x
(x, y)

)
,

and the vector (h, k). Consequently, by the Cauchy–Schwarz inequality,

|E(h, k)| 6 ‖v(h, k)‖‖(h, k)‖.

Dividing by ‖(h, k)‖ for (h, k) 6= (0, 0) we then get

|E(h, k)|√
h2 + k2

6 ‖v(h, k)‖, (4.23)

where

‖v(h, k)‖ =

√(
∂f

∂x
(x + θh, y + k)− ∂f

∂x
(x, y)

)2

+
(

∂f

∂y
(x, y + ηk)− ∂f

∂x
(x, y)

)2

tends to 0 as (h, k) → (0, 0) since the partial derivatives of f are continuous on
U . It then follows from the estimate in (4.23) and the Sandwich Theorem that

lim
(h,k)→(0,0)

|E(h, k)|√
h2 + k2

= 0,

which is (4.22). This shows that f is differentiable at (x, y). Since (x, y) was
arbitrary, the result follows.

4.5.3 C1 Maps and Differentiability

Definition 4.5.2 (C1 Maps). Let U denote an open subset of Rn. The vector
valued map

F (x) =


f1(x)
f2(x)

...
fm(x)

 for all x ∈ U,

where fi : U → R are scalar fields on U , is said to be of class C1, or a C1 map,
if the partial derivatives

∂fi

∂xj
(x) i = 1, 2, . . . ,m; j = 1, 2, . . . , n,

are continuous on U .
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Proposition 4.5.1 then says that a C1 scalar field must be differentiable.
Thus, being a C1 scalar field is sufficient for the map being differentiable. How-
ever, it is not necessary. For example, the function

f(x, y) =

(x2 + y2) sin
(

1
x2 + y2

)
, if (x, y) 6= (0, 0)

0, if (x, y) = (0, 0)

is differentiable at (0, 0); however, the partial derivatives are not continuous at
the origin. (This is shown in Problem 6 of Assignment #5.)

The result of Proposition 4.5.1 applies more generally to C1 vector–valued
maps:

Proposition 4.5.3 (C1 implies Differentiability). Let U denote an open subset
of Rn and F : U → Rm be a vector field on U defined by

F (x) =


f1(x)
f2(x)

...
fm(x)

 for all x ∈ U,

where the scalar fields fi : U → R are of class C1 in U , for i = 1, 2, . . . ,m.
Then, the vector–valued F is differentiable in U and the matrix representation
of the linear transformation

DF (x) : Rn → Rm

is given by 

∂f1

∂x1
(x)

∂f1

∂x2
(x) · · · ∂f1

∂xn
(x)

∂f2

∂x1
(x)

∂f2

∂x2
(x) · · · ∂f2

∂xn
(x)

...
...

...
...

∂fm

∂x1
(x)

∂fm

∂x2
(x) · · · ∂fm

∂xn
(x)


. (4.24)

The matrix of partial derivative of the components of F in equation (4.24) is
called the Jacobian matrix of the map F at x. It is the matrix that represents
the derivative map DF (x) : Rn → Rm with respect to the standard bases in
Rn and Rm. We will therefore denote it by DF (x). Hence, DF (x)w can be
understood as matrix multiplication of the Jacobian matrix of F at x by the
column vector w. If m = n, then the determinant of the square matrix DF (x)
is called the Jacobian determinant of F at x, and is denoted by the symbols

JF (x) or
∂(f1, f2, . . . , fn)
∂(x1, x2, . . . , xn)

. We then have that

JF (x) =
∂(f1, f2, . . . , fn)
∂(x1, x2, . . . , xn)

= detDF (x).
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Example 4.5.4. Let F : R2 → R2 be the map

F (x, y) =
(

x2 − y2

2xy

)
for all (x, y) ∈ R2.

Then, the Jacobian matrix of F is

DF (x, y) =
(

2x −2y
2y 2x

)
for all (x, y) ∈ R2,

and the Jacobian determinant is

JF (x, y) = 4(x2 + y2).

If we let u = x2 − y2 and v = 2xy, we can write the Jacobian determinant as
∂(u, v)
∂(x, y)

.

4.6 Derivatives of Compositions

The goal of this section is to prove that compositions of differentiable functions
are differentiable:

Theorem 4.6.1 (The Chain Rule). Let U denote an open subset of Rn and
Q and open subset of Rm, and let F : U → Rm and G : Q → Rk be maps.
Suppose that F (U) ⊆ Q. If F is differentiable at x ∈ U and G is differentiable
at y = F (x) ∈ Q, then the composition

G ◦ F : U → Rk

is differentiable at x and the derivative map D(G ◦F )(x) : Rn → Rk is given by

D(G ◦ F )(x)w = DG(y)DF (x)w for all w ∈ Rn.

Proof. Since F is differentiable at x ∈ U , for w ∈ Rn with ‖w‖ sufficiently small,

F (x + w) = F (x) + DF (x)w + E
F
(w), (4.25)

where

lim
‖w‖→0

‖E
F
(w)‖

‖w‖
= 0. (4.26)

Similarly, for v ∈ Rm with ‖v‖ sufficiently small,

G(y + v) = G(y) + DG(y)v + E
G
(v), (4.27)

where

lim
‖v‖→0

‖E
G
(v)‖

‖v‖
= 0. (4.28)
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It then follows from (4.25) that, for w ∈ Rn with ‖w‖ sufficiently small,

G ◦ F (x + w) = G(F (x + w))
= G(F (x) + DF (x)w + E

F
(w))

= G(F (x) + v),
(4.29)

where we have set
v = DF (x)w + E

F
(w). (4.30)

Observe that, by the triangle inequality and the Cauchy–Schwarz inequality,

‖v‖ 6 ‖DF (x)‖‖w‖+ ‖E
F
(w)‖; (4.31)

so that, by virtue of (4.26), we can make ‖v‖ small by making ‖w‖ small. It
then follows from (4.27) and (4.29) that

G ◦ F (x + w) = G(F (x)) + DG(F (x))v + E
G
(v),

where v as given in (4.30) can be made sufficiently small in norm by making
‖w‖ sufficiently small. It then follows that, for ‖w‖ sufficiently small,

G ◦ F (x + w) = G ◦ F (x) + DG(y)DF (x)w + DG(y)E
F
(w) + E

G
(v). (4.32)

Put
E(w) = DG(y)E

F
(w) + E

G
(v) (4.33)

for w ∈ Rn and v as given in (4.30). The differentiability of G◦F at x will then
follow from (4.32) if we can prove that

lim
‖w‖→0

‖E(w)‖
‖w‖

= 0. (4.34)

This will also prove that

D(G ◦ F )(x)w = DG(y)DF (x)w for all w ∈ Rn.

To prove (4.34), take the norm of E(w) defined in (4.33), apply the triangle and
Cauchy–Schwarz inequalities, and divide by ‖w‖ to get that

‖E(w)‖
‖w‖

6 ‖DG(y)‖‖EF
(w)‖

‖w‖
+
‖E

G
(v)‖

‖v‖
‖v‖
‖w‖

, (4.35)

where, by virtue of the inequality in (4.31),

‖v‖
‖w‖

6 ‖DF (x)‖+
‖E

F
(w)‖

‖w‖
.

The proof of (4.34) will then follow from this last estimate, (4.26), (4.28), (4.35)
and the Sandwich Theorem. This completes the proof of the Chain Rule.
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Example 4.6.2. Let U be an open subset of the xy–plane, R2, and f : U → R
be a differentiable scalar field. Let Q be an open subset of the uv–plane, R2, and
Φ: Q → R2 be a differentiable map such that Φ(Q) ⊆ U . Then, by the Chain
Rule, the map

f ◦ Φ: Q → R

is differentiable. Furthermore, putting

g(u, v) = f ◦ Φ(u, v),

where

Φ(u, v) =
(

x(u, v)
y(u, v)

)
, for (u, v) ∈ Q,

we have that
Dg(u, v) = Df(x(u, v), y(u, v))DΦ(u, v).

Writing this in terms of Jacobian matrices we get

(
∂g
∂u

∂g
∂v

)
=

(
∂f
∂x

∂f
∂y

) (
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)
,

from which we get that

∂g

∂u
=

∂f

∂x

∂x

∂u
+

∂f

∂y

∂y

∂u

and
∂g

∂v
=

∂f

∂x

∂x

∂v
+

∂f

∂y

∂y

∂v
.

In the previous example, if Φ: Q → R2 is a one–to–one map, then Φ is called
a change of variable map. Writing Φ in terms of a its components we have

x = x(u, v)
y = y(u, v),

we see that Φ changes from uv–coordinates to xy–coordinates. As a more con-
crete example, consider the change to polar coordinates maps

x = r cos θ
y = r sin θ,

where 0 6 r < ∞ and −π < θ 6 π. We then have that

∂f

∂r
=

∂f

∂x

∂x

∂r
+

∂f

∂y

∂y

∂r

and
∂f

∂θ
=

∂f

∂x

∂x

∂θ
+

∂f

∂y

∂y

∂θ
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give the partial derivatives of f with respect to the polar variables r and θ in
terms of the partial derivatives of f with respect to the Cartesian coordinates
x and y and the derivative of the change of variables map

Φ(r, θ) =
(

r cos θ
r sin θ

)
.

Example 4.6.3. Let U denote an open subset of Rn and I an open interval
of real numbers. Suppose that f : U → R is a scalar differentiable field and
σ : I → Rn is a differentiable path with σ(I) ⊆ U . Then, by the Chain Rule,
f(σ(t)) is differentiable for all t ∈ I, and

d
dt

f(σ(t)) = Df(σ(t))Dσ(t) for all t ∈ I,

or
d
dt

f(σ(t)) = ∇f(σ(t)) · σ′(t) for all t ∈ I.

Example 4.6.4 (Tangent plane to a sphere). Let f : R3 → R be given by

f(x, y, x) = x2 + y2 + z2 for all (x, y, z) ∈ R3.

Define the set
S = {(x, y, z) ∈ R3 | f(x, y, z) = 1}.

Then, S is the sphere of radius 1 around the origin in R3, or the unit sphere in
R3.

Let σ : I → R3 denote a C1 maps that lies entirely on the unit sphere; that
is,

f(σ(t)) = 1 for all t ∈ I.

Then, differentiating with respect to t on both sides,

d
dt

f(σ(t)) = 0 for all t ∈ I,

and applying the Chain Rule, we obtain that

∇f(σ(t)) · σ′(t) = 0 for all t ∈ I.

Thus, the gradient of f is perpendicular to the tangent to the path σ.
For a fixed point, (xo, yo, zo), on the sphere S, consider the collection of all

C1 paths, σ : I → R3 on the sphere, such that σ(to) = (xo, yo, zo) for a fixed
to ∈ I. What we have just derived shows that the tangent vectors to the path
at (xo, yo, zo) all lie on a plane perpendicular to ∇f(xo, yo, zo). This plane is
called the tangent plane to S at (xo, yo, zo), and it has ∇f(xo, yo, zo) as its
normal vector.
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For example, the tangent plane to S at the point(
1
2
,
1
2
,

1√
2

)
has normal vector

n = ∇f(1/2, 1/2, 1/
√

2),

where
∇f(x, y, z) = 2x î + 2y ĵ + 2z k̂;

so that
n = î + ĵ +

√
2 k̂.

Consequently, the tangent plane to S at the point (1/2, 1/2, 1/
√

2) has equation

(1)
(

x− 1
2

)
+ (1)

(
y − 1

2

)
+ (

√
2)

(
z − 1√

2

)
= 0,

which simplifies to
x + y +

√
2 z = 2.



Chapter 5

Integration

In this chapter we extend the concept of the Riemann integral∫ b

a

f(x)dx

for a real valued function, f , defined on a closed and bounded interval [a, b].
We begin by defining integrals of scalar fields over curves in Rn which can be
parametrized by C1 paths.

5.1 Path Integrals

Definition 5.1.1 (Simple Curve). A curve C in Rn is said to be a C1, simple
curve if there exists a C1 path σ : I → Rn, for some open interval I containing
a closed and bounded interval [a, b], such that

(i) σ([a, b]) = C,

(ii) σ is one–to–one on [a, b], and

(iii) σ′(t) is never the zero vector for all t in I.

The path σ is called a parametrization of the curve C.

Example 5.1.2. Let C denote the arc of the unit circle in R2 given by

C = {(x, y) ∈ R2 | x2 + y2 = 1; y > 0; 0 6 x 6 1}.

Figure 5.1.1 shows a picture of C. The path σ : [0, π/2] → R2 given by

σ(t) = (cos t, sin t) for all t ∈ [0, π/2]

provides a parametrization of C. Observe that σ is a C1 path defined for all t ∈ R
since sin and cos are infinitely differentiable functions in all of R. Furthermore,
observe that

σ′(t) = (− sin t, cos t) for all t ∈ R

53
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x

y

1

1

r(cos t, sin t)

Figure 5.1.1: Curve C

always has norm 1; thus, condition (iii) in Definition 5.1.1 is satisfied.
To show that σ is one–to–one on [0, π/2], suppose that

σ(t1) = σ(t2)

for some t1 and t2 in [0, π/2]. Then,

(cos(t1), sin(t1)) = (cos(t2), sin(t2))

and so
cos(t1) = cos(t2).

Since cos is one–to–one on [0, π/2], it follows that

t1 = t2,

and, therefore, σ is one–to–one. Thus, condition (ii) in Definition 5.1.1 also
holds true for σ.

Condition (i) in Definition 5.1.1 is left for the reader to verify.

There are more than one way to parametrize a given simple curve. For
instance, in the previous example, we could have used γ : [0, π] → R2 given by

γ(t) = (cos(t/2), sin(t/2)) for all t ∈ [0, π].

γ is called a reparametrization of the curve C. Observe that, since

‖γ′(t)‖ =
1
2
, for all t ∈ R,

this new parametrization of C amounts to traversing the curve C at a slower
speed.

Definition 5.1.3. Let σ : [a, b] → Rn be a differentiable, one–to–one path.
Suppose also that σ′(t), is never the zero vector. Let h : [c, d] → [a, b] be a
one–to–one and onto map such that h′(t) 6= 0 for all t ∈ [c, d]. Define

γ(t) = σ(h(t)) for all t ∈ [c, d].

γ : [c, d] → Rn is a called a reparametrization of σ
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Observe that the path σ : [0, 1] → R2 given by

σ(t) = (t,
√

1− t2) for all t ∈ [0, 1]

also parametrizes the quarter circle C in the previous example. However, it is
not a C1 parametrization of C in the sense of Definition 5.1.1 since the derivative
map

σ′(t) =
(

1,− t√
1− t2

)
for |t| < 1,

does not extend to a continuous map on an open interval containing [0, 1] since
it is undefined at t = 1.

Figure 5.1.2: Curves which are not simple

Definition 5.1.4 (Simple Closed Curve). A curve C in Rn is said to be a C1,
simple closed curve if there exists a C1 parametrization of C, σ : [a, b] → Rn,
satisfying:

(i) σ([a, b]) = C,

(ii) σ(a) = σ(b),

(iii) σ is one–to–one on [a, b), and

(iv) σ′(t) is never the zero vector for all t where it is defined.

Example 5.1.5. The unit circle, C, in R2 given by

C = {(x, y) ∈ R2 | x2 + y2 = 1},
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is a C1, simple closed curve. The path σ : [0, 2π] → R2 given by

σ(t) = (cos t, sin t) for all t ∈ [0, 2π]

provides a C1 parametrization of C satisfying all the conditions in Definition
5.1.4. The verification of this is left to the reader.

Remark 5.1.6. Condition (ii) in Definition 5.1.1 and condition (iii) in Def-
inition 5.1.4 guarantee that a simple curve does not have self–intersections or
crossings. Thus, the plane curves pictured in Figure 5.1.2 are not simple curves.

5.1.1 Arc Length

Definition 5.1.7 (Arc Length of a Simple Curve). Let C denote a simple curve
(either closed or otherwise). We define the arc length of C, denoted `(C), by

`(C) =
∫ b

a

‖σ′(t)‖dt,

where σ : [a, b] → Rn is a C1 parametrization of C, over a closed and bounded
interval [a, b], satisfying the conditions in Definition 5.1.1 (or in Definition 5.1.4
for the case of a simple closed curve).

Example 5.1.8. Let C denote the quarter of the unit circle in R2 defined in
Example 5.1.2 (see also Figure 5.1.1). In this case,

σ(t) = (cos t, sin t) for all t ∈ [0, π/2]

provides a C1 parametrization of C with

σ′(t) = (− sin t, cos t) for all t ∈ R;

so that ‖σ′(t)‖ = 1 for all t and therefore

`(C) =
∫ π/2

0

‖σ′(t)‖dt =
∫ π/2

0

dt =
π

2
.

To see why the definition of arc length in Definition ?? is plausible, consider
a simple curve pictured in Figure 5.1.3 and parametrized by the C1 path

σ : [a, b] → Rn.

Subdivide the interval [a, b] into N subintervals by means of a partition

a = to < t1 < t2 < · · · < ti−1 < ti < · · · < ti < tN−1 < tN = b.

This partition generates a polygon in Rn constructed by joining σ(ti−1) to σ(ti)
by straight line segments, for i = 1, 2, . . . , N (see Figure 5.1.3). If we denote
the polygon by P , then we can approximate `(C) by `(P ); we then have that

`(C) ≈
N∑

i=1

‖σ(ti)− σ(ti−1)‖.
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Figure 5.1.3: Approximating arc length

Now, since σ is C1, and hence differentiable,

σ(ti)− σ(ti−1) = (ti − ti−1)σ′(ti−1) + Ei(ti − ti−1)

for each i = 1, 2, . . . , N , where

lim
h→0

‖Ei(h)‖
|h|

= 0,

for each i = 1, 2, . . . , N . Now, by making N larger and larger, while assuring
that the largest of the differences ti− ti−1, for each i = 1, 2, . . . , N , gets smaller
and smaller, we can make the further approximation

`(C) ≈
N∑

i=1

‖σ′(ti−1)‖(ti − ti−1).

Observe that the expression

N∑
i=1

‖σ′(ti−1)‖(ti − ti−1)

is a Riemann sum for the function ‖σ′(t)‖ over the interval [a, b]. Now, since
we are assuming the σ is of class C1, it follows that the map t 7→ ‖σ′(t)‖ is
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continuous on [a, b]. Thus, a theorem from analysis guarantees that the sums

N∑
i=1

‖σ′(ti−1)‖(ti − ti−1)

converge as N →∞ while

max
16i6N

(ti − ti−1) → 0.

The limit will be the Riemann integral of ‖σ′(t)‖ over the interval [a, b]. Thus,
it makes sense to define

`(C) =
∫ b

a

‖σ′(t)‖dt.

We next see that we will always get the same value of the integral for any
C1 parametrization of σ.

Let γ(t) = σ(h(t)), for all t ∈ [c, d], be reparametrization of σ : [a, b] → Rn;
that is, h is a one–to–one, differentiable function from [c, d] to [a, b] with h′(t) > 0
for all t ∈ (c, d). We consider the integral∫ d

c

‖γ′(t)‖dt.

By the Chain Rule,

γ′(t) =
d

dt
[σ(h(t))] = h′(t)σ′(h(t)).

We then have that∫ d

c

‖γ′(t)‖dt =
∫ d

c

‖h′(t)σ′(h(t))‖dt

=
∫ d

c

‖σ′(h(t))‖ |h′(t)|dt

=
∫ d

c

‖σ′(h(t))‖ h′(t)dt,

since h′(t) > 0. Next, make the change of variables τ = h(t). Then, dτ = h′(t)dt
and ∫ d

c

‖σ′(h(t))‖h′(t)dt =
∫ b

a

‖σ′(τ)‖dτ.

It then follows from Definition 5.1.7 that

`(C) =
∫ d

c

‖γ′(t)‖dt
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for any reparametrization γ = σ ◦ h of σ, with h′ > 0. In the case in which
h′ < 0, we get the same result with the understanding that h(c) = b and
h(d) = a. Thus, any reparametrization of σ will yield the same value for the
integral `(C) given in Definition 5.1.7.

It remains to see that any two parametrizations

σ : [a, b] → Rn and γ : [c, d] → Rn

of a simple curve C are reparametrizations of each other. This will be proved
in a subsequent section in this notes.

5.1.2 Defining the Path Integral

Let U be an open subset of Rn and C be a C1 simple curve (closed or otherwise)
which is entirely contained in U . Suppose that f : U → R is a continuous scalar
field defined on U . We define the integral of f over the curve C, denoted by∫

C

f

by ∫
C

f =
∫ b

a

f(σ(t))‖σ′(t)‖dt, (5.1)

where σ : [a, b] → Rn is a C1 parametrization of C, over a closed and bounded
interval [a, b], satisfying the conditions in Definition 5.1.1 (or in Definition 5.1.4
for the case of a simple closed curve).∫

C

f is called the path integral of f over C. This integral is guaranteed to

exist as a limit of Riemann sums of the function f(σ(t))‖σ′(t)‖ over [a, b] by
virtue of the continuity of f and the fact that σ is a C1 parametrization of C.

Example 5.1.9. A metal wire is in the shape of the portion of a parabola
y = x2 from x = −1 to x = 1. Suppose the linear mass density along the wire
(in grams per centimeter) is proportional to the distance to the y–axis (the axis
of the parabola). Compute the mass of the wire.

Solution: The wire is parametrized by the path

σ(t) = (t, t2) for − 1 6 t 6 1.

Let C denote the image of σ. Let f(x, y) denote the linear mass
density of the wire. Then, f(x, y) = k|x| for some constant of pro-
portionality k. It then follows that the mass of the wire is

M =
∫

C

f =
∫ 1

−1

k|t|‖σ′(t)‖dt,

where
σ′(t) = (1, 2t),
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so that
‖σ′(t)‖ =

√
1 + 4t2.

Hence, by the symmetry of the wire with respect to the y axis

M =
∫

C

f = 2
∫ 1

0

kt
√

1 + 4t2dt.

Evaluating this integral yields

M =
k

6
(5
√

5− 1).

�

5.2 Line Integrals

In the previous section we saw how to integrate a scalar field on a C1, simple
curve. In this section we describe how to integrate vector fields on curves.
Technically, what we’ll be doing is integrating a component (which is a scalar)
of a vector field on the given curve. More precisely, let U denote an open subset
of Rn and let F : U → Rn be a vector field on U . Suppose that there is a curve,
C, which is contained in U and which is parametrized by a C1 path

σ : [a, b] → Rn.

We have seen that the vector σ′(t) gives the tangent direction to the path at
σ(t). The vector

T (t) =
1

‖σ′(t)‖
σ′(t)

is, therefore, a unit tangent vector to the path. The tangential component of
the of the vector field, F , is then given by the dot product of F and T :

F · T.

The line integral of F on the curve C parametrized by σ is given by∫
C

F · Tds =
∫ b

a

F (σ(t)) · T (t) ‖σ′(t)‖dt.

Observe that we can re–write this as∫
C

F · Tds =
∫ b

a

F (σ(t)) · 1
‖σ′(t)‖

σ′(t) ‖σ′(t)‖dt;

therefore, ∫
C

F · Tds =
∫ b

a

F (σ(t)) · σ′(t)dt. (5.2)
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Example 5.2.1. Let F : R2\{(0, 0)‖ → R2 be given by

F (x, y) =
−y

x2 + y2
î +

x

x2 + y2
ĵ for (x, y) 6= (0, 0),

and let C denote the unit circle traversed in the counterclockwise direction. Eval-
uate

∫
C

F · Tds.

Solution: The path

σ(t) = (cos t, sin t), for t ∈ [0, 2π],

is a C1 parametrization for C with

σ′(t) = (− sin t, cos t), for t ∈ R.

Applying the definition of the line integral in (5.2) yields∫
C

F · Tds =
∫ 2π

0

F (cos t, sin t) · (− sin t, cos t)dt

=
∫ 2π

0

(sin2 t + cos2 t)dt

= 2π.

�

Let
F (x, y, z) = P (x, y, z) î + Q(x, y, z) ĵ

denote a vector filed defined in a region U of R2, where P and Q are continuous
scalar fields defined on U . Let

σ(t) = x(t) î + y(t) ĵ, for t ∈ [a, b],

be a C1 parametrization of a C1 curve, C, contained in U . Then

σ′(t) = x′(t) î + y′(t) ĵ for t ∈ (a, b),

and, applying the definition of the line integral of F on C in (5.2) yields∫
C

F · Tds =
∫ b

a

(P (x(t), y(t))x′(t) + Q(x(t), y(t))y′(t))dt

=
∫ b

a

(P (x(t), y(t))x′(t)dt + Q(x(t), y(t))y′(t)dt)

Next, use the notation dx = x′(t)dt and dy = y′(t)dt for the differentials of x
and y, respectively, to re–write the line integral as∫

C

F · Tds =
∫

C

Pdx + Qdy. (5.3)
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Equation (5.3) suggests another way to evaluate the line integral of a 2–dimensional
vector field on a plane curve.

Example 5.2.2. Evaluate the line integral
∫

C

−ydx + (x − 1)dy, where C is

the simple closed curve made up of the line segment from (−1, 0) to (1, 0) and
the top portion of the unit circle traversed in the counterclockwise direction (see
picture in Figure 5.2.4).

x

y

(1, 0)(−1, 0)

(0, 1)

JJ]

-

C2

C1

Figure 5.2.4: Example 5.2.2 Picture

Solution: Observe that C is not a C1 curve since no tangent vector
can be defined at the points (−1, 0) and (1, 0). However, C can be
decomposed into two C1 curves (see Figure 5.2.4):

(i) C1: the directed line segment from (−1, 0) to (1, 0), and

(ii) C2 = {(x, y) ∈ R2 | x2 + y2 = 1, y > 0}; the top portion of the
unit circle in R2 traversed in the counterclockwise sense.

Then,∫
C

−ydx+(x−1)dy =
∫

C1

−ydx+(x−1)dy+
∫

C2

−ydx+(x−1)dy.

We evaluate each of the integrals separately.

On C1: x = t and y = 0 for −1 6 t 6 1; so that dx = dt and dy = 0.
Thus, ∫

C1

−ydx + (x− 1)dy = 0.

On C2: x = cos t and y = sin t for 0 6 t 6 π; so that dx = − sin tdt
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and dy = cos tdt. Thus

∫
C2

−ydx + (x− 1)dy =
∫ π

0

(− sin t(− sin t)dt + (cos t− 1) cos tdt)

=
∫ π

0

(sin2 t + cos2 t− cos t)dt

=
∫ π

0

(1− cos t)dt

= [t− sin t]π0

= π.

It then follows that

∫
C

−ydx + (x− 1)dy = π.

�

We can obtain an analogous equation to that in (5.3) for the case of a three
dimensional field

F = P î + Q ĵ + R k̂,

where P , Q and R are scalar fields defined in some region U of R3 which contains
the simple curve C:

∫
C

F · Tds =
∫

C

Pdx + Qdy + Rdz. (5.4)

5.3 Gradient Fields

Suppose that a field F : U → Rn is the gradient of a C1 scalar field, f , defined
on U ; that is, F = ∇f . Then, for any C1 parametrization,

σ : [0, 1] → Rn,
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of a curve C in U connecting a point xo to x1, also in U ,∫
C

F · Tds =
∫ 1

0

F (σ(t)) · σ′(t)dt

=
∫ 1

0

∇f(σ(t)) · σ′(t)dt

=
∫ 1

0

d
dt

(f(σ(t))) dt

= f(σ(1))− f(σ(0))

= f(x1)− f(xo).

Thus, the line integral of F = ∇f on a curve C is determined by the values of
f at the endpoints of the curve.

A field F with the property that F = ∇f , for a C1 scalar field, f , is called
a gradient field, and f is called a potential for the field F .

Example 5.3.1 (Gravitational Potential). According to Newton’s Law of Uni-
versal Gravitation, the earth exerts a gravitational pull on an object of mass m
at a point (x, y, z) above the surface of the earth, which is at a distance of

r =
√

x2 + y2 + z2

from the center of the earth (located at the origin of three dimensional space),
an is given by

F (x, y, z) = −km

r2
r̂, (5.5)

where r̂ is a unit vector in the direction of the vector ~r = x î + y ĵ + z k̂. The
minus sign indicates that the force is directed towards the center of the earth.

Show that the field F is a gradient field.

Solution: We claim that F = ∇f , where

f(r) =
km

r
and r =

√
x2 + y2 + z2 6= 0. (5.6)

To see why this is so, use the Chain Rule to compute

∂f

∂x
= f ′(r)

∂r

∂x
= −km

r2

x

r
.

Similarly,
∂f

∂y
= −km

r2

y

r
, and

∂f

∂z
= −km

r2

z

r
.
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It then follows that

∇f =
∂f

∂x
î +

∂f

∂y
ĵ +

∂f

∂z
k̂

= −km

r2

x

r
î− km

r2

y

r
ĵ − km

r2

z

r
k̂

= −km

r2

(x

r
î +

y

r
ĵ +

z

r
k̂
)

= −km

r2

1
r

(
x î + y ĵ + z k̂

)
= −km

r2
r̂,

which is the vector field F defined in (5.5). �

It follows from the fact that the Newtonian gravitational field F defined in
(5.5) is a gradient field that the line integral of F along any curve in R3, which
does not go through the origin, connecting ~ro = (xo, yo, zo) to ~r1 = (x1, y1, z1),
is given by ∫

C

F · Tds = f(x1, y1, z1)− f(xo, yo, zo) =
km

r1
− km

ro
,

where ro =
√

x2
o + y2

o + z2
o and r1 =

√
x2

1 + y2
1 + z2

1 . The function f defined in
(5.6) is called the gravitational potential.

5.4 Flux Across Plane Curves

According the Jordan Curve Theorem, a simple closed curve in the plane divides
the plane into two connected regions:

(i) a bounded region called the “inside” of the curve, and

(ii) an unbounded region called the “outside” of the curve.

Let C denote a C1, simple, closed curve in the plane parametrized by the C1

path
σ : [a, b] → R2.

We can then define a unit vector, n̂, perpendicular to to the tangent unit vector,
T , to the curve, and pointing towards the outside of the curve. n̂ is called the
outward unit normal to the curve.

Example 5.4.1. The outward unit normal to the unit circle, C, parametrized
by the path

σ(t) = (cos t, sin t), for t ∈ [0, π],
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is the vector
n̂(t) = (cos t, sin t), for t ∈ [0, π].

In general, if the parametrization of a C1, simple, closed curve, C, is given
by

σ(t) = (x(t), y(t)) for a 6 t 6 b,

where x and y are C1 functions of t, then the vector

n̂(t) = ± 1
‖σ′(t)‖

(
dy

dt
î− dx

dt
ĵ

)
,

where the sign is chosen appropriately, will be the outward unit normal to the
curve. We assume, for convenience, that the path σ is always oriented so that
the positive sign indicates the outward direction.

Given a vector field, F = P î + Q ĵ, defined on a region containing a C1,
simple, closed curve, C, we define the flux of F across C to be the integral∫

C

F · n̂ds =
∫ b

a

F (σ(t)) · 1
‖σ′(t)‖

(
dy

dt
î− dx

dt
ĵ

)
‖σ′(t)‖dt

=
∫ b

a

(P î + Q ĵ) ·
(

dy

dt
î− dx

dt
ĵ

)
dt

=
∫ b

a

(
P

dy

dt
−Q

dx

dt

)
dt

Thus, using the definitions of the differentials of x and y, we can write the flux
of F across the curve C as∫

C

F · n̂ds =
∫

C

Pdy −Qdx. (5.7)

Example 5.4.2. Compute the flux of the field F (x, y) = x î + y ĵ across the
unit circle

C = {(x, y) ∈ R2 | x2 + y2 = 1}
traversed in the counterclockwise direction.

Solution: Parametrize the circle with x = cos t, y = sin t, for
t ∈ [0, 2π]. Then, dx = − sin tdt, dy = cos t, and, using the definition
of flux in (5.7),∫

C

F · n̂ds =
∫

C

Pdy −Qdx

=
∫ 2π

0

(cos2 t + sin2 t)dt

= 2π.

�



5.5. DIFFERENTIAL FORMS 67

An interpretation of the flux of a vector field is provided by the following
situation in fluid dynamics: Let V (x, y) denote the velocity field of a plane fluid
in some region U in R2 containing the simple closed curve C. Then, at each
point (x, y) in U , V (x, y) gives the velocity of the fluid as it goes through that
point in units of length per unit time. Suppose we know the density of the fluid
as a function, ρ(x, y), of the position of the fluid in U (this is a scalar field) in
units of mass per unit area (since this is a two–dimensional fluid). Then, the
vector field

F (x, y) = ρ(x, y)V (x, y),

in units of mass per unit length per unit time, gives the rate of fluid flow per
unit length at the point (x, y). The integrand

F · n̂ds,

in the flux definition in (5.7), is then in units of mass per unit time and measures
the amount of fluid that crosses a section of the curve C of length ds in the
outward normal direction. The flux then gives the rate at which the fluid is
crossing the curve C from the inside to the outside; in other words, the flux
gives the rate of flow of fluid out of the region bounded by C.

5.5 Differential Forms

The expression Pdx + Qdy + Rdz in equation (5.3), where P , Q and R are
scalar fields defined in some open region in R3 is an example of a differential
form; more precisely, it is called a differential 1–form. Differential 1–forms act
on directed line segments [P1, P2], for points P1 and P2 in R3, by means of
evaluation of line integrals:∫

[P1,P2]

Pdx + Qdy + Rdz,

which yields a real number.

Definition 5.5.1 (Directed Line Segment). Given points P1 and P2 in Rn, the
segment of the line going from P1 to P2, denoted by [P1, P2], is called the directed
line segment from P1 to P2. Thus,

[P1, P2] =
{−−→

OP1 + t
−−−→
P1P2 | 0 6 t 6 1

}
,

where O is the origin in R3.

Thus, [P1, P2] is a simple, C1 curve parametrized by the path

σ(t) =
−−→
OP1 + t

−−−→
P1P2, 0 6 t 6 1.
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Example 5.5.2. The directed line segment from the point (1, 1, 0) to the point
(3, 2, 1) in R3 is given by the parametric equations

x = 1 + 2t

y = 1 + t

z = t

where 0 6 t 6 1.

Example 5.5.3. Evaluate the differential 1–form yzdx + xzdy + xydz on the
directed line segment from the point P1(1, 1, 0) to the point P2(3, 2, 1).

Solution: We compute∫
[P1,P2]

yzdx + xzdy + xydz,

where [P1, P2] is parametrized by
x = 1 + 2t

y = 1 + t

z = t

for 0 6 t 6 1. Then, 
dx = 2dt

dy = dt

dz = dt,

and∫
C

yzdx + xzdy + xydz =
∫ 1

0

[2(1 + t)t + (1 + 2t)t + (1 + 2t)(1 + t)]dt

=
∫ 1

0

(2t + 2t2 + t + 2t2 + 1 + t + 2t + 2t2)dt

=
∫ 1

0

(1 + 6t + 6t2)dt

= 6.

�

Thus, the differential 1–form, ω = yzdx + xzdy + xydz in the previous
example maps the directed line segment [(1, 1, 0), (3, 2, 1)] to the real number 6.
We write

ω([P1, P2]) =
∫

[P1,P2]

yzdx + xzdy + xydz = 6.
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A differential 0–form in R3 is a C1 scalar filed f : R3 → R which acts on
points in R3 by means of the evaluation the function at those points. The
differential of a 0 form, f , is the differential 1–form given by

df =
∂f

∂x
dx +

∂f

∂y
dy +

∂f

∂z
dz.

This differential 1–form acts on a directed line segment [P1, P2] by means of∫
[P1,P2]

df =
∫

[P1,P2]

∂f

∂x
dx +

∂f

∂y
dy +

∂f

∂z
dz = f(P2)− f(P1). (5.8)

This is essentially the Fundamental Theorem of Calculus. To see why (5.8)
holds true, observe that the second integral in (5.8) is the line integral of the
gradient field F = ∇f on the curve [P1, P2] connecting P1 to P2. It is therefore
determined by the values of f at those points.

Differential 0–forms act on points. Differential 1–forms act on directed line
segments. Differential 2–forms act on oriented triangles. We first define oriented
triangles in the plane.

Definition 5.5.4 (Oriented Triangles in R2). Given three non–collinear points
P1, P2 and P3 in the plane, we denote by T = [P1, P2, P3] the triangle with
vertices P1, P2 and P3. T is a 2–dimensional object consisting of the simple
curve generated by the directed line segments [P1, P2], [P2, P3], and [P3, P1] as
well as the inside of the curve. If the curve is traversed in the counterclockwise
sense, the T has positive orientation; if the curve is traversed in the clockwise
sense the T has negative orientation.

The differential 2–form, dx∧dy, acts on an oriented triangle T by evaluating
its area, if T has a positive orientation, and the negative of the area if T has a
negative orientation:

dx ∧ dy(T ) = ± area(T ).

We denote this by ∫
T

dx ∧ dy = signed area of T.

Example 5.5.5. Let P1(0, 0), P2(1, 2) and P3(2, 1) and let T = [P1, P2, P3]

denote the oriented triangle generated by those points. Evaluate
∫

T

dx ∧ dy.

Solution: Embed the points P1, P2 and P3 in R3 by appending 0
as the last coordinate, and let

v =
−−−→
P1P2 =

 1
2
0

 and w =
−−−→
P1P3 =

 2
1
0

 .
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Then
∫

T

dx ∧ dy is the component of the vector
1
2
v × w along the

direction of k̂; that is,∫
T

dx ∧ dy =
1
2
(v × w) · k̂,

where

v × w =

∣∣∣∣∣∣
î ĵ k̂
1 2 0
2 1 0

∣∣∣∣∣∣ = (1− 4) k̂ = −3 k̂.

It then follows that ∫
T

dx ∧ dy = −3
2
.

We see that
1
2
(v ×w) · k̂ gives the appropriate sign for the dxdy(T )

since in this case T has negative orientation. �

In general, for non–collinear points P1, P2 and P3 in R3, the value of dx∧dy
on T = [P1, P2, P3] is obtained by

dx ∧ dy(T ) =
∫

T

dxdy =
1
2
(v × w) · k̂,

where
v =

−−−→
P1P2 and w =

−−−→
P1P3.

This gives the signed area of the orthogonal projection of the triangle T onto
the xy–plane. Similarly, we obtain the values of the 2–forms dy∧dz and dz∧dx:

dy ∧ dz(T ) =
∫

T

dy ∧ dz =
1
2
(v × w) · î,

and

dz ∧ dx(T ) =
∫

T

dz ∧ dx =
1
2
(v × w) · ĵ.

Example 5.5.6. Evaluate
∫

T

dy ∧ dz,

∫
T

dz ∧ dx, and
∫

T

dx ∧ dy, where

T = [P1, P2, P3] for

P1(−1, 1, 2), P2(3, 2, 1) and P3(4, 7, 1).

Solution: Let

v =
−−−→
P1P2 =

 4
1
−1

 and w =
−−−→
P1P3 =

 5
6
−1

 ,
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and compute

v×w =

∣∣∣∣∣∣
î ĵ k̂
4 1 −1
5 6 −2

∣∣∣∣∣∣ = (−2+6) î−(−8+5) ĵ+(24−5) k̂ = 4 î+3 ĵ+19 k̂.

It then follows that ∫
T

dy ∧ dz = 2,∫
T

dz ∧ dx =
3
2

and ∫
T

dx ∧ dy =
19
2

.

�

5.6 Calculus of Differential Forms

From the expression

dx ∧ dy(T ) =
∫

T

dx ∧ dy =
1
2
(v × w) · k̂,

for T = [P1, P2, P3], where

v =
−−−→
P1P2 and w =

−−−→
P1P3,

we obtain that

dy ∧ dx(T ) =
∫

T

dy ∧ dx =
1
2
(w × v) · k̂ = −1

2
(v × w) · k̂ = −dx ∧ dy(T ).

It then follows that
dy ∧ dx = −dx ∧ dy. (5.9)

From this we can deduce that

dx ∧ dx = 0. (5.10)

Thus, the process of evaluating signed areas of oriented triangles induces a
product of 1–forms which is anti–symmetric. This product is usually called
the “wedge” product of two 1–forms. Hence, the use of the symbol “∧” when
indicating this operation.

We can also multiply 0–forms and 1–forms; for instance,

P (x, y)dx.
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The result is a 1–form which can be added to other 1–forms; for example,

Pdx + Qdy,

where P and Q are scalar fields. We can also multiply this 1–from by the 1–form
dx:

(Pdx + Qdy) ∧ dx = Pdx ∧ dx + Qdy ∧ dx = −Qdx ∧ dy,

where we have used (5.9) and (5.10).
We have seen how to obtain a differential 1–form from a C1 0–form, f , by

computing the differential of f :

df =
∂f

∂x
dx +

∂f

∂y
dy +

∂f

∂z
dz.

This defines an operator, d, from the class of 0–forms to the class of 1–forms.
This operator, d, also acts on the 1–form

ω = P (x, y)dx + Q(x, y)dy

in R2, where P and Q are C1 scalar fields, as follows:

dω = (dP ) ∧ dx + (dQ) ∧ dy

=
(

∂P

∂x
dx +

∂P

∂y
dy

)
∧ dx +

(
∂Q

∂x
dx +

∂Q

∂y
∧ dy

)
dy

=
∂P

∂x
dx ∧ dx +

∂P

∂y
dy ∧ dx +

∂Q

∂x
dx ∧ dy +

∂Q

∂y
dy ∧ dy

=
(

∂Q

∂x
− ∂P

∂y

)
dx ∧ dy,

where we have used (5.9) and (5.10). Thus, the differential of the 1–form

ω = Pdx + Qdy

in R2 is the 2–form

dω =
(

∂Q

∂x
− ∂P

∂y

)
dx ∧ dy.

Thus, the differential, dω, of the 1–form, ω, acts on oriented triangles,

T = [P1, P2, P3],

in R2. By analogy with what happens to the differential, df , of a 0–form, f ,
when it is integrated over a directed line segment, we expect that∫

T

dω
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is completely determined by the action of ω on the boundary, ∂T , of T , which
is a simple, closed curve made up of the directed line segments [P1, P2], [P2, P3]
and [P3, P1]. More specifically, if T has positive orientation, we expect that∫

T

dω =
∫

∂T

ω. (5.11)

This is the Fundamental Theorem of Calculus in two–dimensions for the special
case of oriented triangles, and we will prove it in the following sections. We will
first see how to evaluate the 2–form dω on oriented triangles.

5.7 Evaluating 2–forms: Double Integrals

Given an oriented triangle, T = [P1, P2, P3], in the xy–plane and with positive
orientation, we would like to evaluate the 2–form f(x, y)dx ∧ dy on T , for a
given continuous scalar field f ; that is, we would like to evaluate∫

T

f(x, y)dx ∧ dy.

For the case in which T has a positive orientation, we will denote the value of∫
T

f(x, y)dx ∧ dy by ∫
T

f(x, y)dxdy (5.12)

and call it the double integral of f over T . In this sense, we then have that∫
T

f(x, y)dy ∧ dx = −
∫

T

f(x, y)dxdy,

for the case in which T has a positive orientation.
We first see how to evaluate the double integral in (5.12) for the case in

which T is the unit triangle U = [(0, 0), (1, 0), (0, 1)] in Figure 5.7.5, which is

oriented in the positive direction. We evaluate
∫

T

f(x, y)dxdy by computing

two iterated integrals as follows∫
U

f(x, y)dxdy =
∫ 1

0

{∫ 1−x

0

f(x, y) dy

}
dx. (5.13)

Observe that the “inside” integral,∫ 1−x

0

f(x, y) dy,

yields a function of x for x ∈ [0, 1]; call this function g; that is,

g(x) =
∫ 1−x

0

f(x, y) dy for all x ∈ [0, 1];
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x
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Figure 5.7.5: Unit Triangle U

Then, ∫
U

f(x, y)dxdy =
∫ 1

0

g(x) dx.

We could also do the integration with respect to x first, then integrate with
respect to y:

∫
U

f(x, y)dxdy =
∫ 1

0

{∫ 1−y

0

f(x, y) dx

}
dy. (5.14)

In this case the inner integral yields a function of y which can then be integrated
from 0 to 1.

Observe that the iterated integrals in (5.13) and (5.14) correspond to alter-
nate descriptions of U as

U = {(x, y) ∈ R2 | 0 6 x 6 1, 0 6 y 6 1− x}

or

U = {(x, y) ∈ R2 | 0 6 x 6 1− y, 0 6 y 6 1},

respectively.
The fact that the iterated integrals in equations (5.13) and (5.14) yield the

same value, at least for the case in which f is continuous on a region containing
U , is a special case of a theorem in Advanced Calculus or Real Analysis known
as Fubini’s Theorem.

Example 5.7.1. Evaluate
∫

U

x dxdy.
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Solution: Using the iterated integral in (5.13) we get∫
U

x dxdy =
∫ 1

0

{∫ 1−x

0

x dy

}
dx

=
∫ 1

0

[
xy

]1−x

0
dx

=
∫ 1

0

x(1− x) dx

=
∫ 1

0

(x− x2) dx

=
1
6
.

We could have also used the iterated integral in (5.14):∫
U

x dxdy =
∫ 1

0

{∫ 1−y

0

x dx

}
dy

=
∫ 1

0

[1
2
x2

]1−y

0
dy

=
1
2

∫ 1

0

(1− y)2 dy

= −1
2

∫ 0

1

u2 dx

=
1
2

∫ 1

0

u2 du

=
1
6
.

�

Iterated integrals can be used to evaluate double–integrals over plane regions
other than triangles. For instance, suppose a region, R, is bounded by the
vertical lines x = a and x = b, where a < b, and by the graphs of two functions
g1(x) and g2(x), where g1(x) 6 g2(x) for a 6 x 6 b; that is

R = {(x, y) ∈ R2 | g1(x) 6 y 6 g2(x), a 6 x 6 b};

then, ∫
R

f(x, y) dxdy =
∫ b

a

{∫ g2(x)

g1(x)

f(x, y) dy

}
dx.
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Example 5.7.2. Let R denote the region in the first quadrant bounded by the

unit circle, x2 +y2 = 1; that is, R is the quarter unit disc. Evaluate
∫

R

y dxdy.

Solution: In this case, the region R is described by

R = {(x, y) ∈ R2 | 0 6 y 6
√

1− x2, 0 6 x 6 1},

so that ∫
R

y dxdy =
∫ 1

0

∫ √
1−x2

0

y dydx

=
∫ 1

0

1
2
y2

∣∣∣√1−x2

0
dx

=
1
2

∫ 1

0

(1− x2) dx

=
1
3

�

Alternatively, the region R can be described by

R = {(x, y) ∈ R2 | h1(y) 6 x 6 h2(y), c 6 y 6 d},

where h1(y) 6 h2(y) for c 6 y 6 d. In this case,∫
R

f(x, y) dxdy =
∫ d

c

{∫ h2(y)

h1(y)

f(x, y) dx

}
dy.

Example 5.7.3. Identify the region, R, in the plane in which the following
iterated integral ∫ 1

0

∫ 1

y

1√
1 + x2

dxdy

is computed. Change the order of integration and then evaluate the double inte-
gral ∫

R

1√
1 + x2

dxdy.

Solution: In this case, the region R is

R = {(x, y) ∈ R2 | y 6 x 6 1, 1 6 y 6 1}.

This is also represented by

R = {(x, y) ∈ R2 | 0 6 x 6 1, 1 6 y 6 x};
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x = y x = 1

Figure 5.7.6: Region R in example 5.7.3

see picture in Figure 5.7.6. It then follows that∫
R

1√
1 + x2

dxdy =
∫ 1

0

∫ x

0

1√
1 + x2

dydx

=
∫ 1

0

1√
1 + x2

y
∣∣∣x
0

dx

=
∫ 1

0

1√
1 + x2

x dx

=
∫ 1

0

1
2
√

1 + x2
2x dx

=
∫ 2

1

1
2
√

u
du

=
√

u
∣∣∣2
1

=
√

2− 1.

�

If R is a bounded region of R2, and f(x, y) > 0 for all (x, y) ∈ R, then∫
R

f(x, y) dxdy

gives the volume of the three dimensional solid that lies below the graph of the
surface z = f(x, y) and above the region R.

Example 5.7.4. Let a, b and c be positive real numbers. Compute the volume
of the tetrahedron whose base is the triangle T = [(0, 0), (a, 0), (0, b)] and which
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lies below the plane
x

a
+

y

b
+

z

c
= 1.

Solution: We need to evaluate
∫

T

z dxdy, where

z = c
(
1− x

a
− y

b

)
.

Then,∫
T

z dxdy = c

∫
T

(
1− x

a
− y

b

)
dxdy

= c

∫ a

0

∫ b(1−x/a)

0

(
1− x

a
− y

b

)
dydx

= c

∫ a

0

[
y − xy

a
− y2

2b

]b(1−x/a)

0

dx

= c

∫ a

0

[
b
(
1− x

a

)
− x

a
b
(
1− x

a

)
− 1

2b
b2

(
1− x

a

)2
]

dx

= bc

∫ a

0

(
1
2
− x

a
+

x2

2a2

)
dx

= bc
[a

2
− a

2
+

a

6

]
=

abc

6
.

�

5.8 Fundamental Theorem of Calculus in R2

In this section we prove the Fundamental Theorem of Calculus in two dimensions
expressed in (5.11). More precisely, we have the following theorem:

Proposition 5.8.1 (Fundamental Theorem of Calculus for Oriented Triangles
in R2). Let ω be a C1 1–form defined on some plane region containing a posi-
tively oriented triangle T . Then,∫

T

dω =
∫

∂T

ω. (5.15)

More specifically, let ω = Pdx + Qdy be a differential 1–form for which P
and Q are C1 scalar fields defined in some region containing a positively oriented
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triangle T . Then ∫
T

(
∂Q

∂x
− ∂P

∂y

)
dxdy =

∫
∂T

Pdx + Qdy. (5.16)

This version of the Fundamental Theorem of Calculus is known as Green’s
Theorem.

Proof of Green’s Theorem for the Unit Triangle in R2. We shall first prove Propo-
sition 5.8.1 for the unit triangle U = [(0, 0), (1, 0), (0, 1)] = [P1, P2, P3]:∫

U

(
∂Q

∂x
− ∂P

∂y

)
dxdy =

∫
∂U

Pdx + Qdy, (5.17)

where P and Q are C1 scalar fields defined on some region containing U , and ∂U
is made up of the directed line segments [P1, P2], [P2, P3] and [P3, P1] traversed
in the counterclockwise sense.

We will prove separately that∫
U

∂Q

∂x
dxdy =

∫
∂U

Qdy, (5.18)

and
−

∫
U

∂P

∂y
dxdy =

∫
∂U

Pdx. (5.19)

Together, (5.18) and (5.19) will establish (5.17).

x

y

P1 P2

P3 @
@

@
@

@
@

x + y = 1

Figure 5.8.7: Unit Triangle U

Evaluating the double integral in (5.18) we get∫
U

∂Q

∂x
dxdy =

∫ 1

0

∫ 1−y

0

∂Q

∂x
dxdy.

Using the Fundamental Theorem of Calculus to evaluate the inner integral we
then obtain that ∫

U

∂Q

∂x
dxdy =

∫ 1

0

[Q(1− y, y)−Q(0, y)] dy. (5.20)



80 CHAPTER 5. INTEGRATION

Next, we evaluate the line integral in (5.18) to get∫
∂U

Qdy =
∫

[P1,P2]

Qdy +
∫

[P2,P3]

Qdy +
∫

[P3,P1]

Qdy

or ∫
∂U

Qdy =
∫

[P2,P3]

Qdy +
∫

[P3,P1]

Qdy, (5.21)

since dy = 0 on [P1, P2].
Now, parametrize [P2, P3] by{

x = 1− y

y = y,

for 0 6 y 6 1. It then follows that∫
[P2,P3]

Qdy =
∫ 1

0

Q(1− y, y)dy. (5.22)

Parametrizing [P3, P1] by {
x = 0
y = 1− t,

for 0 6 t 6 1, we get that {
dx = 0dt

dy = −dt,

and ∫
[P3,P1]

Qdy = −
∫ 1

0

Q(0, 1− t)dt,

which we can re-write as∫
[P3,P1]

Qdy = −
∫ 0

1

Q(0, y)(−dy) = −
∫ 1

0

Q(0, y)dy. (5.23)

Substituting (5.23) and (5.22) into (5.21) yields∫
∂U

Qdy =
∫ 1

0

Q(1− y, y)dy −
∫ 1

0

Q(0, y)dy (5.24)

Comparing the left–hand sides on the equations (5.24) and (5.20), we see that
(5.18) is true. A similar calculation shows that (5.19) is also true. Hence,
Proposition 5.8.1 is proved for the unit triangle U .

In subsequent sections, we show how to extend the proof of Green’s Theorem
to arbitrary triangles (which are positively oriented) and then for arbitrary
bounded regions which are bounded by positively oriented simple curves.
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5.9 Changing Variables

We would like to express the integral of a scalar field, f(x, y), over an arbitrary
triangle, T , in the xy–plane, ∫

T

f(x, y) dxdy, (5.25)

as an integral over the unit triangle, U , in the uv–plane,∫
U

g(u, v) dudv,

where the function g will be determined by f and an appropriate change of
coordinates that takes U to T .

We first consider the case of the triangle T = [(0, 0), (a, 0), (0, b)], pictured
in Figure 5.9.8, where a and b are positive real numbers.

x

y

a

b HH
HHH

HHH
HHHH

(x, y)

∆x
∆y

Figure 5.9.8: Triangle [(0, 0), (a, 0), (0, b)]

Observe that the vector field

Φ: R2 → R2

defined by

Φ
(

u
v

)
=

(
au
bv

)
, for all

(
u
v

)
∈ R2,

maps the unit triangle, U , in the uv–plane pictured in Figure 5.9.9, to the trian-
gle T in the xy–plane. The reason for this is that the line segment [(0, 0), (1, 0)]
in the uv–plane, parametrized by {

u = t

v = 0,

for 0 6 t 6 1, gets mapped to {
x = at

y = 0,
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u

v

(0, 0) (1, 0)

(0, 1)
@

@
@

@
@

@(u, v)

∆u
∆v

Figure 5.9.9: Unit Triangle, U , in the uv–plane

for 0 6 t 6 1, which is a parametrization of the line segment [(0, 0), (a, 0)] in
the xy–plane.

Similarly, the line segment [(1, 0), (0, 1)] in the uv–plane, parametrized by{
u = 1− t

v = t,

for 0 6 t 6 1, gets mapped to {
x = a(1− t)
v = bt,

for 0 6 t 6 1, which is a parametrization of the line segment [(a, 0), (0, b)] in
the xy–plane.

Similar considerations show that [(0, 1), (0, 0)] gets mapped to [(0, b), (0, 0)]
under the action of Φ on R2.

Writing (
x(u, v)
y(u, v)

)
= Φ

(
u
v

)
for all

(
u
v

)
∈ R2,

we can express the integrand in the double integral in (5.25) as a function of u
and v:

f(x(u, v), y(u, v)) for (u, v) in U.

We presently see how the differential 2–form dxdy can be expressed in terms of
dudv. To do this consider the small rectangle of area ∆u∆v and lower left–hand
corner at (u, v) pictured in Figure 5.9.9. We see where the vector field Φ maps
this rectangle in the xy–plane. In this case, it happens to be a rectangle with
lower–left hand corner Φ(u, v) = (x, y) and dimensions a∆u× b∆v. In general,
however, the image of the ∆u×∆v rectangle under a change of coordinates Φ
will be a plane region bounded by curves like the one pictured in Figure 5.9.10.
In the general case, we approximate the area of the image region by the area
of the parallelogram spanned by vectors tangent to the image curves of the line
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x

y

a

b HH
HHH

HHH
HHHH(x, y)

Figure 5.9.10: Image of Rectangle under Φ

segments [(u, v), (u + ∆u, v)] and [(u, v), (u, v + ∆v)] under the map Φ at the
point (u, v). The curves are given parametrically by

σ(u) = Φ(v, v) = (x(u, v), y(u, v)) for u 6 u 6 u + ∆u,

and

γ(v) = Φ(u, v) = (x(u, v), y(u, v)) for v 6 v 6 v + ∆v.

The tangent vectors the the point (u, v) are, respectively,

∆u σ′(u) = ∆u

(
∂x

∂u
î +

∂y

∂u
ĵ

)
,

and

∆v γ′(v) = ∆v

(
∂x

∂v
î +

∂y

∂v
ĵ

)
,

where we have scaled by ∆u and ∆v, respectively, by virtue of the linear ap-
proximation provided by the derivative maps Dσ(u) and Dγ(v), respectively.
The area of the image rectangle can then be approximated by the norm of the
cross product of the tangent vectors:

∆x∆y ≈ ‖∆u σ′(u)×∆v γ′(v)‖

= ‖σ′(u)× γ′(v)‖∆u∆v
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Evaluating the cross–product σ′(u)× γ′(v) yields

σ′(u)× γ′(v) =
(

∂x

∂u
î +

∂y

∂u
ĵ

)
×

(
∂x

∂v
î +

∂y

∂v
ĵ

)

=
∂x

∂u

∂y

∂v
î× ĵ +

∂y

∂u

∂x

∂v
ĵ × î

=
(

∂x

∂u

∂y

∂v
− ∂y

∂u

∂x

∂v

)
k̂

=
∂(x, y)
∂(u, v)

k̂,

where
∂(x, y)
∂(u, v)

denotes the determinant of the Jacobian matrix of the Φ at (u, v).

It then follows that

∆x∆y ≈
∣∣∣∣∂(x, y)
∂(u, v)

∣∣∣∣ ∆u∆v,

which translates in terms of differential forms to

dxdy =
∣∣∣∣∂(x, y)
∂(u, v)

∣∣∣∣ dudv.

We therefore obtain the Change of Variables Formula∫
T

f(x, y) dxdy =
∫

U

f(x(u, v), y(u, v))
∣∣∣∣∂(x, y)
∂(u, v)

∣∣∣∣ dudv. (5.26)

This formula works for any regions R and D in the plane for which there is a
change of coordinates Φ: R2 → R2 such that Φ(D) = R:∫

R

f(x, y) dxdy =
∫

D

f(x(u, v), y(u, v))
∣∣∣∣∂(x, y)
∂(u, v)

∣∣∣∣ dudv. (5.27)

Example 5.9.1. For the case in which T = [(0, 0), (a, 0), (0, b)] and U is the
unit triangle in R2, and Φ is given by

Φ
(

u
v

)
=

(
au
bv

)
for all

(
u
v

)
∈ R2,

The Change of Variables Formula (5.26) yields∫
T

f(x, y) dxdy = ab

∫
U

f(au, bv) dudv.

Example 5.9.2. Let R = {(x, y) ∈ R2 | x2 + y2 6 1}. Evaluate∫
R

e−x2−y2
dxdy.
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Solution: Let D = {(r, θ) ∈ R2 | 0 6 r 6 1, 0 6 θ < 2π} and
consider the change of variables

Φ
(

r
θ

)
=

(
r cos θ
r sin θ

)
for all

(
r
θ

)
∈ R2,

or {
x = r cos θ

y = r sin θ.

The change of variables formula (5.27) in this case then reads∫
R

f(x, y) dxdy =
∫

D

f(r cos θ, r sin θ)
∣∣∣∣∂(x, y)
∂(y, θ)

∣∣∣∣ drdθ,

where f(x, y) = e−x2−y2
, and

∂(x, y)
∂(y, θ)

= det


∂x

∂r

∂x

∂θ

∂y

∂r

∂y

∂θ


= det

(
cos θ −r sin θ
sin θ r cos θ

)
= r.

Hence, ∫
R

e−x2−y2
dxdy =

∫
D

e−r2
r drdθ

=
∫ 2π

0

∫ 1

0

e−r2
r drd θ

=
∫ 2π

0

[
−1

2
e−r2

]1

0

dθ

=
1
2

∫ 2π

0

(
1− e−1

)
dθ

= π
(
1− e−1

)
.

�

Example 5.9.3 (Green’s Theorem for Arbitrary Triangles in R2).
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Appendix A

The Mean Value Theorem
in Convex Sets

Definition A.0.4 (Convex Sets). A subset, A, of Rn is said to be convex if
given any two points x and y in A, the straight line segment connecting them is
entirely contained in A; in symbols,

{x + t(y − x) ∈ Rn | 0 ≤ t 6 1} ⊆ A

Example A.0.5. Prove that the ball Br(O) = {x ∈ Rn | ‖x‖ < r} is a convex
subset of Rn.

Solution: Let x and y be in Br(O); then, ‖x‖ < r and ‖y‖ < r.
For 0 6 t 6 1, consider

x + t(y − x) = (1− t)x + ty.

Thus, taking the norm and using the triangle inequality

‖x + t(y − x)‖ = ‖(1− t)x + ty‖
6 (1− t)‖x‖+ t‖y‖
< (1− t)r + tr = r.

Thus, x + t(y − x) ∈ Br(O) for any t ∈ [0, 1]. Since this is true for
any x, y ∈ Br(O), it follows that Br(O) is convex. �

In fact, any ball in Rn is convex.

Proposition A.0.6 (Mean Value Theorem for Scalar Fields on Convex Sets).
Let B denote and open, convex subset of Rn, and let f : B → R be a scalar field.
Suppose that f is differentiable on B. Then, for any pair of points x and y in
B, there exists a point z is the line segment connecting x to y such that

f(y)− f(x) = Dûf(z)‖y − x‖,

87
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where û is the unit vector in the direction of the vector y − x; that is,

û =
1

‖y − x‖
(y − x).

Proof. Assume that x 6= y, for if x = y the equality certainly holds true.
Define g : [0, 1] → R by

g(t) = f(x + t(y − x)) for 0 6 t 6 1.

We first show that g is differentiable on (0, 1) and that

g′(t) = ∇f(x + t(y − x)) · (y − x) for 0 < t < 1.

(This has been proved in Exercise 4 of Assignment #10).
Now, by the Mean Value Theorem, there exists τ ∈ (0, 1) such that

g(1)− g(0) = g′(τ)(1− 0) = g′(τ).

It then follows that

f(y)− f(x) = ∇f(x + τ(y − x)) · (y − x).

Put z = x + τ(y − x); then, z is a point in the line segment connecting x to y,
and

f(y)− f(x) = ∇f(z) · (y − x)

= ∇f(z) · y − x

‖y − x‖
‖y − x‖

= ∇f(z) · û ‖y − x‖

= Dûf(z)‖y − x‖,

where û =
1

‖y − x‖
(y − x).



Appendix B

Reparametrizations

In this appendix we prove that any two parameterizations of a C1 simple curve
are reparametrizations of each other; more precisely,

Theorem B.0.7. Let C be a C1 simple curve in Rn and σ : [a, b] → Rn and
γ : [c, d] → Rn be two C1 parametrizations of C. Then, there exists differentiable
function h : J → I, where I and J are open intervals with [a, b] ⊆ I and [c, d] ⊆
J , such that

(i) h′(t) > 0 for all t ∈ J ;

(ii) h(c) = a and h(d) = b; and

(iii) γ(t) = σ(h(t)) for all t ∈ J .

In order to prove Theorem B.0.7, we need to develop the notion of a tangent
space to a C1 curve at a given point. We begin with a preliminary definition.

Definition B.0.8 (Tangent Space (Preliminary Definition)). Let C denote a
C1 simple curve parameterized by a C1 path, σ : I → Rn, where I is an open
interval containing 0, and such that and σ(0) = p. We define the tangent
space, Tp(C), of C at p to be the span of the nonzero vector σ′(0); that is,

Tp(C) = span{σ′(0)}.

Remark B.0.9. Observe that the set p+Tp(C) is the tangent line to the curve
C at p, hence the name “tangent space” for Tp(C).

The notion of tangent space is important because it allows us to define the
derivative at p of a map g : C → R which is solely defined on the curve C. The
idea is to consider the composition g ◦ σ : I → R and to require that the real
valued function g ◦σ be differentiable at t = 0. For the case of a C1 scalar field,
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f , which is defined on an open region containing C, the Chain Rule implies that
f ◦ σ is differentiable at 0 and

f ◦ σ′(0) = ∇f(σ(0)) · σ′(0) = ∇f(p) · v,

where v = σ′(0) ∈ Tp(C). Observe that the map

v 7→ ∇f(p) · v for v ∈ Tp(C)

defines a linear map on the tangent space of C at p. We will denote this linear
map by dpf ; that is, dfp : Tp(C) → R is given by

dfp(v) = ∇f(p) · v for v ∈ Tp(C).

Observe that we can then write, for h ∈ R with |h| sufficiently small,

f ◦ σ(0 + h) = f(σ(0)) + dfp(hσ(0)) + E0(h),

where

lim
h→0

|E0(h)|
|h|

= 0,

or
f ◦ σ(0 + h) = f(p) + dfp(v) + E0(|h|),

where v = hσ′(0).

Definition B.0.10. Let C denote a C1 curve parametrized by a C1 path,
σ : I → Rn, where J is an open interval containing 0 and such that σ(0) = p ∈ C.
We say that the function g : C → R is differentiable at p if there exists a linear
function

dgp : Tp(C) → R

such that
g ◦ σ(h) = g(p) + dgp(hσ′(0)) + Ep(|h|),

where

lim
h→0

|Ep(h)|
|h|

= 0.

We see from Definition B.0.10 that, if g : C → R is differentiable at p, then

lim
h→0

g(σ(h))− g(p)
h

exists and equals dgp(σ′(0)). We have already seen that if f is a C1 scalar field
defined in an open region containing C, then

dfp(σ′(0)) = ∇f(p) · σ′(0).

If the only information we have about a function g is what it does to points on
C, then we see why Definition B.0.10 is relevant. It this case it might not make
sense to talk about the gradient of g.
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An example of a function, g, which is only defined on C is the inverse of a
C1 parametrization, γ : J → Rn, of C where J is an interval containing 0 in its
interior with γ(0) = p. Here we are assuming that γ is one–to–one and onto C,
so that

g = γ−1 : C → J

is defined. We claim that, since γ′(0) 6= 0, according to the definition of C1

parametrization in Definition 5.1.1 on page 53 in these notes, the function g is
differentiable at p according to Definition B.0.10. In order to prove this, we first
show that g is continuous at p; that is,

Lemma B.0.11. Let C be a C1 curve parametrized by a C1 map, σ : I → Rn,
where I is an interval of real numbers containing 0 in its interior with σ(0) = p.
Let γ : J → Rn denote another C1 parametrization of C, where J is an interval
of real numbers containing 0 in its interior with γ(0) = p. For every q ∈ C,
define g(q) = τ if and only if γ(τ) = q. Then,

lim
h→0

g(σ(h)) = 0. (B.1)

Proof:


