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Solutions to Assignment #38

1. Let the random vector (X, X3) have a multinomial distribution with parameters
n,pi, P2-

(a) Give the marginal distributions for X; and X, and compute E(X;) for
i=1,2
Solution: Compute, for ny =0,1,2,...,n,
n!
— 1,12
le (nl) - Z n1!n2!p1 p2

n2
na=n—mnj

n' n1 1 n—ni

since p; + po = 1. This is the pmf for a binomial(n,p;) ran-
dom variable. Hence, X; ~ binomial(n,p;). Similarly, Xy ~
binomial(n, po). It then follows that

E(X;)=np; fori=1,2.

O

(b) Show that X; and X, are not independent and compute the covariance,
cov(Xy, Xs), of X7 and Xs.

Solution: Note that
P(Xi=n1,Xo=n2) = P(Xi=n1,X1=n—n)

piipy? ifng+mne=mn
nllng!

0 otherwise.

while

nl . nl

pXI (n1>p(X2 (nQ) = n1'n2|p1 nﬂng'pgl

for n; + ny = n. Thus, X; and X; are not independent.
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To find cov(X7, X3) compute
cov(Xy,Xo) = E[(X; —np1)(Xa —nps)]
= E[X1(Xy —npy) — npi1(Xa — npo)]
= E[X1 Xy —npo Xi] — np1 E(Xo — npy)
= E[X1X5] — npE[Xi]
= FE[X1X5] — n’pap1
= E[X1X5] —n*(1 —p1)p
= E[Xi1X5] —n’py +n’pi

= E[X1X] —npi + (B(X0))?,

where
E[XIXQ] = E[Xl(n—Xl)]

= FEnX; - X12]
= nE[Xy] - E[Xf]
= n’p — E[X?].

It then follows that

COV(Xl,XQ) = —E(X12> + (E(Xl))2

= —var(X)
= _np1<1 - p1)
= —npips2.

O

2. Given two random variables, X and Y, the joint moment generating function
of X and Y, denoted by M, (t1,ts), is defined to be be

(X,Y)

M (tl, tg) = E(€t1X+t2Y>

(X,Y)
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for (t1,t,) in some neighborhood of the origin in R?.
Let the random vector (X7, X») have a multinomial distribution with parameters
n,pi,P2-

(a) Compute the joint mgf of (X, X5).

Solution: Compute

M(XlaXQ) (tl, tg) = E(€t1X1+t2X2)

tini+tan n' n1
—_ etiniriang —p p
E : n1|n' 1 2

ni,n2
ni+n2=n

= E ! (p16 )" (pae’)?
nqlng!
ni,n2

ni+na=n

= (p1e" + pae™)™,

by the binomial theorem. O
0?M oM oM
(b) Verify that cov(X, X3) = 31,08, —(0,0) — o —(0,0)— o (0,0), where M =

(X1,X2)"

Solution: Write M (t1,t3) = (pre'* + pae™2)™ and compute
oM

ot —(t1,t2) = n(pie +pye™)" - preht
1
= npie" (pre + pae'?)" L.
Similarly,
oM
Oty —(t1,t2) = npae™(pre™ + poe?) .

Differentiating one more time we get

azM t t t to\n—2
oror, it = mpaet - (n = Lpiet (pre? + pye®)
1¢02

= n(n — 1)pipaet™2(prelt + ppet2)n 2.
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We then have that

0*M
— (0.0 — -1 n—2
82513752( 5 ) n(n )plp?(pl +p2)
= n(n—1)pips,
since p; + p2 = 1.
Similarly
oM oM
—(0,0)=—(0,0) = n? 2(n-1)
o, (005 ~(0.0) = n*pipa(ps +p2)
= n’pips.
We then have that
*M oM oM
—(0,0) — —(0,0)—(0,0) = —
31518252( ’ ) 8t1( ) )8t2( ) ) npip2,
which is the value for cov(X;, X3) that we got in part (b) of Prob-
lem 1. 0

3. Let X; and X, be independent Poisson(A) random variables. For a fixed value
ofn (n=0,1,2,3,...), determine the conditional distribution of X; given that
X 1+ X2 =n.

Solution: Let Y = X;+ X,. Then, since X; and X, are independent
Poisson(\) random variables, Y ~ Poisson(2)); so that the pmf of YV’

is
20)™
py(m):(ma e for m=0,1,2,...

We want to determine the conditional distribution of X; given Y = n.
For £ =0,1,2,...,n, compute

pX1|Y(k ‘ n) = P(Y




Math 152. Rumbos Fall 2009

by the independence of X; and X5, where

)\k )\
Px, (k) = He
and ok
_ -
pXQ(n - k) - (n — k)'e

We then have that

Dy, (k) " DPx, (n o k)

kln) =
Pa (k| ) O
)\_k; A )\n—k e*/\
K (n—k)!
BV
n!

- o s)

which is the pmf of a binomial(n, 1/2) random variable. It then follows
that

(X1 | Y =n) ~ binomial(n, 1/2).

4. Let Xy, Xy, ..., X; be independent random variables satisfying X; ~ Poisson(\;
for positive parameters A1, \g, ..., A;. For a fixed value of n (n =0,1,2,3,...)
determine the conditional distribution of the random vector (X7, Xs,..., X}

given that X; + Xo + -+ X = n.

Solution: Write Y = X; 4+ X5+ -+ Xj; then, since X1, Xo, ..., X}

5

)

are independent Poisson(\;) random variables, respectively, Y ~ Poisson(\),

where

We want to determine the conditional distribution of

(Xl,XQ,...,XkHY:n.
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For nonnegative integers nq, no, . .., ng such that ny+ns+- - -+nx = n,
compute
p(xl,x2 ,,,,, Xk)\Y(n17 n2,... 7nk) ’ n)

P(X1 I?’Ll,XQ :n2,...,XkI7’Lk,Y:TL)

P(Y =n)
_ P(Xl =ni, Xo :n2,---,Xk:”—nl—nz—"'—nkq)
py (1)
B Px,(n1) Py, (n2) - py (N =11 —ng — -+ —ng_1)
py (1) ’

by the independence of X, X5, ..., Xi. We then have that

p(Xl,Xz ,,,,, Xk)\Y(n:l) nQ, oo 7nk) | n)
ny ngo N—n1—ng——Ng_1
)\1 -1 )\2 —Ao )\k .
e . —‘e e 'e
— 77,1! no! (n—nl—n2_,,'_nk71)'
= -
—6_)‘
n!
ni\n ng
— n' . All)\22 . )\k
nilng!- - ny! \
ni\n ng
—_ n' . A11A22 . Ak
nylng!l -« my!  Amtnatetng
o n! )\1 n )\2 ng )\k; T
nilng! -+ ny! A \ \ ,

Al Ag Ak
9 )\ 9 )\ AR A
tor. Hence, (X1, Xs, ..., X%) | Y = n has a multinomial <n

) random vec-

M A
’)\’)\""7A

which is the pmf of a multinomial (n

k
distribution, where A = ;. O

J=1
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5. Let the random vector (X7, X») have a multinomial distribution with parameters
X1 —np1)?  (Xg—npy)?
(X4 p1) + (X2 p2)  Show

np1 np2
that for large values of n, Q has, approximately, a x?(1) distribution.

n,p1, p2. Define the random variable ) =

Suggestion Use the result of part (b) in Problem 1 and apply the Central Limit
Theorem.
Solution: Since X;binomial(n, p;), the random variable
X1 —npy
npi(1 —p1)

has an approximate normal(0, 1) distribution for large values of n.
Consequently, for large values of n,

(Xl —np1)2
npl(l —pl)

has an approximate x*(1) distribution.
Note that we can write

(Xy — np1)2 _ (Xy — np1)2(1 —p) + (X1 — np1)2p1
npl(l —Pl) npl(l —p1)
_ (Xl - np1)2 i (Xl - np1)2
np1 n(l —P1)

(Xl _np1>2 (n—X2 —npl)2
np n(l—p1)

(X1 —np1)* | (Xa—n(l—p)))?
np1 * n(l _pl)

(Xl - np1)2 i (Xz - np2)2
np1 np2
which is the Pearson Chi-Square statistic, @), for k£ = 2. We have
therefore proved that, for large values of n, the random variable

(Xl — np1)2 i (X2 - np2)2
np1 np2

Y

Q=

has an approximate y?(1) distribution. O



