Pomona College
 Department of Mathematics

Math 107. Vector Calculus

Fall 2011

Course Outline

Time and Place: \quad MW 2:45 pm - 4:00 pm Millikan 134
Instructor: Dr. Adolfo J. Rumbos
Office: Andrew 259
Phone / e-mail: ext. 18713 / arumbos@pomona.edu
Office Hours: \quad MWF 9:00 am - 10:15 am, or by appointment
Text: Vector Calculus by Peter Baxandall and Hans Liebeck
Dover Publications, Inc., 2008 printing
Prerequisites: Math 60 (Linear Algebra) or equivalent course.

Course Description. The main goal of this course is the development of differential and integral calculus ideas, which students learned in a single-variable calculus courses, in dimensions higher than 1 . The main objects of study are functions from n-dimensional Euclidean space to m dimensional Euclidean space (also known as Vector Fields) and their differentiability and integrability properties. We will also be concerned with the study of subsets of Euclidean space on which those functions act. The culmination of the course will be the multivariable version of the Fundamental Theorem of Calculus (also known as the generalized Stokes’ Theorem). In the process leading to Stokes' Theorem, the machinery of differentiable manifolds and differential forms will be introduced.

The specific topics to be covered are listed in the attached Tentative Schedule of Lectures and Examinations.

Assigned Readings and Problems. Readings and problem sets will be assigned at every lecture. Homework assignments will be collected on an alternate basis. Students are strongly encouraged to work on every assigned problem. Late homework assignments will not be graded.
Grading Policy. Grades will be based on the homework, two 50-minute examinations, plus a comprehensive final examination. The grades will be computed as follows:

homework	20%
Two 50-minute exams	50%
final examination	30%

Final Examination.

Time: Friday, December 16 2:00 pm
Place: Millikan 213

