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Chapter 1

Preface

This set of notes has been developed in conjunction with the teaching of Math
31S (Calculus II with Applications to the Life Sciences) at Pomona College
during the fall semester of 2011. The main goal of the course is to introduce
and develop some of the topics in a second semester Calculus course in the
context of problems arising in the life sciences. In particular, we will study how
integral and differential calculus can be applied to solve problems that come up
in population biology; some of those problems are concerned with the description
of the evolution in time of the size of the population of a given species, as well
as the interaction of several species living in a common environment. Analysis
of this type of problems leads naturally to differential equations. These are
mathematical expressions involving an unknown function (which one seeks to
find) and its derivatives.

We will spend the first part of the course learning how to analyze the differ-
ential equations that come up in the study of the problems mentioned above.
Some of the equations can be solved using integral calculus, but others cannot
be solved easily, and so the best one can do is to use approximations, in partic-
ular, linear approximations, to analyze them. We will see that sometimes those
approximate solutions to the equations actually tell us a lot about the system
we are studying.
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Chapter 2

Introduction to Modeling

In this Chapter we introduce a very important modeling principle that can be
used to model situations in the biological or physical sciences in which a certain
quantity (e.g., amount of a substance in a system, number of individuals of a
given species in an ecosystem, etc.) varies with time. We shall refer to it in this
course as a conservation principle. Simply stated, a conservation principle
stipulates that the rate of change of a the amount of a substance in a system is
accounted for by the how much of the substance goes into the system per unit
time, and how much of it goes out of the system per unit time. In mathematical
terms, if we let Q = Q(t) denote the amount of the substance in the system at
time t and assume that Q is modeled by a differentiable function of time, the
conservation principle can be stated as the equation

dQ

dt
= Rate of Q in− Rate of Q out. (2.1)

The expression in (2.1) is an example of a differential equation. It is an equation
because there is an unknown function, Q = Q(t), that we seek to find. The
adjective “differential” refers to the fact that the derivative of Q is involved in
the expression.

We will see in this course that large part of what we call mathematical
modeling reduces to postulating what specific form the right–hand side of the
equation in (2.1) will take. Determining the actual form of the right–hand side
of (2.1) involves some understanding of the system we are studying as well as
some assumptions that are made about how the system works. This process
might require application of scientific principles that govern the system or some
empirical information that have been obtained about the system previously.
We will illustrate this process by presenting two examples: one–compartment
dilution and the derivation of a some models of population growth. The math-
ematical problems that will be derive in the next two sections are the ones that
we will be interested in solving throughout the course.
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2.1 One–Compartment Dilution

Imagine that a certain compartment of fixed volume, V , contains a solvent and
substance that dissolves in the solvent. Let Q = Q(t) denote the amount of the
substance that is being dissolved and which is present in the compartment at
time t depicted in Figure 2.1.1.

-

-

Q(t)

Fi

Fo

Figure 2.1.1: One–Compartment Model

We assume that solution at a concentration ci of the substance goes into
the compartment at a fixed rate Fi measured in units of volume per unit time
(for example, milliliters per minute). Assume also that the solution in the
compartment is mixed instantly. If we know the amount Q(t), we can then
determine the concentration of the substance in the compartment as a function
of time by the expression

c(t) =
Q(t)

V
. (2.2)

If the amount of the substance is measured in grams (gr), and the volume, V ,
is given in milliliters (ml), for instance, then c(t) is measured in units of gr/ml.

We assume that Q = Q(t) is a differentiable function of t and apply the
conservation principle in (2.1) with

Rate of Q in = ciFi (2.3)

and
Rate of Q out = c(t)Fo. (2.4)

To see how (2.3) comes about, observe that in a small instance of time, ∆t, a
volume,

∆V = Fi ·∆t,

of solution at a concentration of ci enters the compartment depicted in Figure
2.1.1. In that volume, ∆V , there is an amount of substance

∆Qi = ciFi ·∆t. (2.5)

Dividing the expression in (2.5) by ∆t 6= 0, and letting ∆t approach 0 yields the
expression in (2.3) by virtue of the assumption of differentiability of Q. Similar
considerations justify the expression in (2.4).
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Combining the expressions in (2.1), (2.3), (2.4) and (2.5) yields the differen-
tial equation

dQ

dt
= ciFi −

Fo
V

Q. (2.6)

In a practical setting, the parameters ci, Fi, Fo and V are known, or can be
estimated. So, what we would like to know is the quantity Q = Q(t) at any
time t. Usually, we have some information about Q(t) at a specific time t = to;
for instance, we may know the amount of the substance at the time that we
begin to observe the system, or at some other time in the past. The task, then,
is to determine the amount of the substance at all other times. In that case we
will be using the model to make predictions which can be tested or which can
be used make informed decisions about the system under study. We will see in
subsequent sections how we can solve the differential equation in (2.6).

2.2 Modeling Population Growth

In this section we will see how to use a conservation principle like the one stated
in equation (2.1) in order to derive a mathematical model that can be used
to describe how the number of organisms of a given species living in certain
environment varies with time. The simplest example in the context of this
course is that of the number of bacteria in a given culture.

Let N = N(t) denote the number of individuals of a population living in a
certain region or environment. We would like to answer the following question:
Suppose the size of the population, No, is known at a certain time to (that is,
No = N(to) is known), is it possible to determine N(t) for other times t? In
order to apply a conservation principle of the type given in (2.1) to the quantity
N(t), we need to assume that N = N(t) is a differentiable function of time.
This assumption is reasonable for situations in which

(i) we are dealing with populations of very large size so that the addition (or
removal) of a few individuals is not very significant; for example, in the
case of a bacterial colony, N is of the order of 106 cells per milliliter;

(ii) ”there are no distinct population changes that occur at timed intervals,”
see [EK88, pg. 117].

Under these assumptions, we may invoke the following conservation principle:

dN

dt
= Rate of individuals in− Rate of individuals out; (2.7)

that is, any change in the population size in a given region or environment has
to be accounted for by the number of new individuals, per unit time, that are
added to the population minus those that are taken out of the population. A
more specific form the conservation equation (2.7) would be

dN

dt
= births− deaths + migrations− harvesting + etc., (2.8)
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where all the quantities on the right–hand side of the equation in (2.8) are given
per unit of time; in other words, they are given as rates. Rates in population
studies are usually given per capita; that is, per unit of population. Thus, the
conservation principle (2.8) can be further written as

1

N

dN

dt
= birth rate− death rate + migration rate + etc., (2.9)

where all the rates on the right–hand side are per capita rates.
For example, in the case in which there are no migrations in or out of the

population, no harvesting or predation, etc., the model in (2.9) takes on the
simpler form:

1

N

dN

dt
= per capita birth rate− per capita death rate. (2.10)

The per capita on the right–hand side of (2.10) need to be modeled. In general,
these can be assumed to be continuous functions of many variables; for instance,
in order to take into account seasonal effects on the per capita birth and death
rates, as well as effects due to overcrowding, or limited space, we may assume
that that the rates are functions of t and N , the population size. More generally,
we may write

per capita birth rate = b(t,N, nutrients or resources, etc.)

and
per capita death rate = d(t,N, nutrients or resources, etc.),

where b and d are continuous functions of all the factors inside the parentheses.
The equation in (2.10) then yields

dN

dt
= (b− d)N, (2.11)

where it is understood that the functions b and d may depend on several vari-
ables. Setting

a = b− d,
we may write the differential equation in (2.11)

dN

dt
= aN, (2.12)

where a is the per capita, or relative, growth rate of the population, which may
depend on many factors.

Making assumptions on the type of dependence of the functions b and d on
the various variables leads to different population models based on (2.11) or
(2.11). In the remaining of this section we discuss two of those models.

First, assume that b and d are constant; that is, b and d are actually inde-
pendent of t, N , etc., In this case , we get that the per capita growth rate, a, is
a constant, denoted by ao, so that the equation in (2.12) becomes

dN

dt
= aoN. (2.13)
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The equation in (2.13) is known as the Malthusian model; an analysis of this
model, which will be presented later in the course, will show that (2.13) predicts
unlimited, exponential, grown if ao > 0, and exponential decay in ao < 0.

A more realistic model for population growth is obtained by assuming that
the functions b and d in (2.11) depend only on N , the population size, and are
linear functions of N :

b = bo − αN, (2.14)

and
d = do + βN, (2.15)

for some positive constants, bo, do, α and β, with do < bo. The functional forms
in (2.14) and (2.15) may be thought of as modeling the effects of overcrowding
and competition for resources in the population. Substituting the expressions
for b and d in (2.14) and (2.15) into (2.11) leads to the equation

dN

dt
= rN

(
1− N

K

)
, (2.16)

where r > 0 is called intrinsic growth rate, which approximates the per capita
growth rate for very low population densities, and K > 0 is called the carrying
capacity. The equation in (2.16) is known as the Logistic growth model of
population growth. Analysis of this model will show that (2.16) predicts limited
growth; that is, for situations in which the initial population, N(0) = No, is
positive, equation (2.16) will have a solution, N = N(t), satisfying

lim
t→∞

N(t) = K.

Our main goal in this course is to show how differential and integral Calculus
can be used analyze differential equation models like the ones in (2.6), (2.12) and
(2.16), and more general ones. We will also see how the theory of approximations
in differential Calculus can be used to obtain qualitative information about what
the models predict.



12 CHAPTER 2. INTRODUCTION TO MODELING



Chapter 3

Applications of Differential
Calculus: Part I

In this chapter we show how to use the concepts and techniques of differential
Calculus that students learned in Calculus I in order to give a preliminary
analysis of the Logistic equation in (2.16). The analysis provided here assumes
that a solution to (2.16) satisfying a given initial condition exists, and is unique.
Existence and uniqueness for the initial value problem for (2.16) will be obtained
in Chapter 4 as an application of integral Calculus.

3.1 Preliminary Analysis of the Logistic Equa-
tion

We assume that a solution, N = N(t), to the Logistic equation in (2.16) exists
for any non–negative initial condition

N(0) = No. (3.1)

We also assume that the solution, N = N(t), to (2.16) subject to the initial
condition in (3.1) is twice differentiable.

Rewrite the differential equation in (2.16) in the form

dN

dt
=

r

K
N (K −N) , (3.2)

and observe that, when N = 0 or N = K,
dN

dt
= 0. We will see in Chapter 4

that, in fact,
dN

dt
= 0 for all t,

so that N(t) is constant (see Problem 1 in Assignment 1). Hence, we get that

N(t) = 0, for all t, (3.3)

13
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and

N(t) = K, for all t, (3.4)

are possible solutions to the Logistic equation in (3.2) corresponding to the
initial conditions No = 0 and No = K, respectively. The solutions in (3.3) and
(3.4) are known as equilibrium solutions of the Logistic equation in (3.2). They
are sketched in Figure 3.1.1 in a graph of N versus t.

t

N

K

Figure 3.1.1: Sketch of Equilibrium Solutions

In the remainder of this section we will see how to use techniques of dif-
ferential Calculus to obtain sketches of possible solutions of the initial value
problem 

dN

dt
= rN

(
1− N

K

)
;

N(0) = No,

(3.5)

for No > 0 and No 6= K.

We see from (3.2) that
dN

dt
> 0 for 0 < N < K; so that N(t) increases for

positive values of N less than K. Similarly, according to (3.2) again,
dN

dt
< 0

for N > K; it then follows from (3.2) that N(t) decreases for values of N higher
than K

Next, differentiate with respect to t on both sides of (3.2) to obtain

d2N

dt2
= r

dN

dt
− 2r

K
N
dN

dt
, (3.6)

where we have used the Chain Rule when taking the derivative of the second
term on the right–hand side (3.6). The right–hand side of the equation in (3.6)
can be factored to yield

d2N

dt2
=

2r

K

(
K

2
−N

)
dN

dt
. (3.7)



3.2. MATHEMATICAL QUESTIONS 15

Substituting the expression for
dN

dt
in (3.2) into the right–hand side of the

equation in (3.7) yields

d2N

dt2
=

2r2

K2
N

(
N − K

2

)
(N −K) . (3.8)

According to (3.8), the graph of N = N(t) might have an inflection point at
the values

N = 0, N =
K

2
, or N = K.

We also get from (3.8) that the sign of the second derivative of N with respect to
t, for positive values of N , is determined by the signs of the right–most factors
on the right–hand side of (3.8):

N − K

2
and N −K.

The signs of these two factors are displayed in Table 3.1. The concavity of of

N − K

2
− + +

N −K − − +

0 K/2 K
N ′′(t) + − +

graph of N(t) concave–up concave–down concave–up

Table 3.1: Concavity of the graph of N = N(t)

the graph of N = N(t) is also displayed in Table 3.1. From that table we get
that the graph of N = N(t) is concave up for

0 < N <
K

2
or N > K,

and concave down for
K

2
< N < K.

Putting together the information on concavity in Table 3.1 and the fact that
N(t) increases for 0 < N < K and decreases for N > K, we obtain the sketches
of possible solutions to the logistic equation displayed in Figure 3.1.2.

3.2 Mathematical Questions

The sketch of possible solutions to the Logistic equation (3.2) displayed in Figure
3.1.2 raises more questions than it actually answers. The sketches in the figure
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t

N

K

Figure 3.1.2: Possible Solutions to Logistic equation

presuppose certain properties of the solutions that have not been derived from
the model yet. For instance, how do we know that graphs of different solutions
do not cross, or intersect, each other? For example, how do we know that a
population that starts out between K/2 and K, but very close to K, does not
reach the carrying capacity in a finite time? How do we know that graphs of
solutions can be drawn indefinitely as t increases? Do solutions exists for all
positive values of t? These equations will be answered for the Logistic equation
in the following chapter.

In Chapter 4 we will use integral Calculus to show that solutions to the
initial value problem in (3.5) corresponding No > 0 exist for all t > 0. We will
also see that graphs of solutions corresponding to different initial conditions
cannot intersect. The first statement answers the mathematical question of
global existence, while the second relates to the question of uniqueness.



Chapter 4

Applications of Integral
Calculus

Differential equation models like the ones discussed in Chapter 2 seek to describe
the behavior of a quantity, y = y(t), as it varies with time, t. The conservation
principle that was described is that chapter leads to differential equations of the
general form

dy

dt
= f(t, y, λ), (4.1)

where lambda represents a parameter, or set of parameters. The equation in
(4.1) prescribes the rate of change of the function y = y(t) by some function,
f(t, y, λ), of the independent variable, t, the dependent variable y, and (possibly)
some parameter, or set of parameters, λ, which are determined by the physical
or biological situation being modeled. In the simplest situation, equation (4.1)
takes the form

dy

dt
= f(t), (4.2)

for some continuous function, f , of a single variable, t. In this situation, solving
the problem posed by the differential equation model reduces to answering the
question:

Question 4.0.1. Suppose that we know the rate of change of a function, y =
y(t), at every time, t, in some time–interval. Can we recover the function
y = y(t) from that information?

We will see in the next section that Question 4.0.1 is answered by the Fun-
damental Theorem of Calculus, provided that we have information on the value
of the function y = y(t) at some initial time, to:

y(to) = yo. (4.3)

The equations in (4.2) and (4.3), taken together, are known as an initial value

17
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problem for the differential equation in (4.2) and usually written as
dy

dt
= f(t),

y(to) = yo.
(4.4)

4.1 Recovering a Function from its Rate of Change

Writing the differential equation in the initial value problem (4.4) as

y′(τ) = f(τ), for τ ∈ I, (4.5)

and integrating on both side of (4.5) from to to t, we obtain∫ t

to

y′(τ) dτ =

∫ t

to

f(τ) dτ, for t ∈ I. (4.6)

Next, assuming that f is continuous on I, and applying the Fundamental The-
orem of Calculus to the left–hand side of the equation in (4.6), yields

y(t)− y(to) =

∫ t

to

f(τ) dτ, for t ∈ I. (4.7)

Thus, using the initial condition (4.3) and solving for y(t) in (4.7) yields

y(t) = yo +

∫ t

to

f(τ) dτ, for t ∈ I. (4.8)

The fact that the function y = y(t), for t ∈ I, defined in (4.8) solves the initial
value problem in (4.4), for the case in which f is continuous, follows from the
Fundamental Theorem of Calculus and the fact that∫ to

to

f(τ) dτ = 0. (4.9)

To see why the function y = y(t) defined in (4.8) solves the initial value problem
in (4.4) for a continuous function f , first note that (4.9) and (4.8) imply that

y(to) = yo +

∫ to

to

f(τ) dτ = y0,

which shows that y = y(t) satisfies the initial condition in (4.4).
Next, put

G(t) =

∫ t

to

f(τ) dτ, for all t ∈ I. (4.10)

Then, since we are assuming that f is continuous on I, the Fundamental The-
orem of Calculus implies that G is differentiable on I and

G′(t) = f(t), for all t ∈ I; (4.11)



4.1. RECOVERING A FUNCTION FROM ITS RATE OF CHANGE 19

in other words, the function G is an antiderivative of f (see [Sil89, p. 147]).
In view of (4.8) and (4.10), note that

y(t) = yo +G(t), for t ∈ I, (4.12)

so that, differentiating on both sides of (4.12) with respect to t and observing
that yo is a constant, we obtain from (4.12) and (4.11) that

y′(t) = f(t), for all t ∈ I,

which shows that the function y = y(t) defined in (4.8), for a continuous function
f , satisfies the differential equation in (4.4).

Next, we see that there is only one differentiable which solves the initial
value problem in (4.4). We say that he initial value problem in (4.4) has a
unique solution. To establish the uniqueness of the solution to the initial value
problem (4.4), suppose that y = y(t) and z = z(t) are two solutions of the initial
value problem in (4.4) over some interval I; that is, suppose that y and z are
differentiable functions satisfying

y′(t) = f(t) and z′(t) = f(t), for t ∈ I, (4.13)

and

y(to) = z(to) = yo. (4.14)

Put v(t) = y(t)− z(t) for all t ∈ I. Then, v is differentiable on I, and

v′(t) = y′(t)− z′(t) = f(t)− f(t) = 0, for all t ∈ I,

where we have used (4.13). It then follows that

v(t) = c, for all t ∈ I, (4.15)

where c is a constant (see Problem 1 in Assignment 1).
Next, use (4.15) and (4.14) to compute

c = v(to) = y(to)− z(to) = yo − yo = 0.

Hence, it follows from (4.15) that

v(t) = 0, for all t ∈ I,

which implies that

z(t) = y(t), for all t ∈ I;

We have therefore shown that any two solutions of the differential equation in
(4.2) that agree at a point in the interval I must agree at every point in the
interval. This proves uniqueness of the solution to the initial value problem in
(4.4).
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Example 4.1.1. Find the solution to the initial value problem
dy

dt
= 1− t2,

y(1) = 2.
(4.16)

Solution: Applying the formula in (4.8) we obtain that

y(t) = 2 +

∫ t

1

(1− τ2) dτ

= 2 +

[
τ − τ3

3

]t
1

= 2 + t− t3

3
− 2

3
,

so that

y(t) =
4

3
+ t− t3

3
, for all t ∈ R,

is the unique solution to the initial value problem in (4.16). �

Example 4.1.2. Let ` = `(t) for t > 0 denote the unique solution to the initial
value problem 

dy

dt
=

1

t
;

y(1) = 0,
(4.17)

for t > 0. Sketch the graph of y = `(t).

Solution: From `′(t) =
1

t
, for t > 0, we see that `′(t) > 0 for all t > 0, and

therefore `(t) is increasing for t > 0. Differentiating one more time we obtain

`′′(t) = − 1

t2
, for t > 0; thus, `′′(t) < 0 for t > 0, so that the graph of y = `(t) is

concave down for t > 0. A preliminary graph of the graph of y = `(t) is shown
in Figure 4.1.1 on page 21. �

Example 4.1.3. Let ` = `(t) for t > 0 denote the unique solution to the initial
value problem (4.17) in Example 4.1.3, and let a denote a positive real number.
Define

g(t) = `(at)− `(a), for t > 0

Compute g′(t) and show that

`(at) = `(a) + `(t), for all t > 0. (4.18)

Solution: Compute

g′(t) =
d

dt
[`(at)],
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t

y

y = `(t)

Figure 4.1.1: Sketch of graph of y = `(t)

since `(a) is a constant. Next, apply the Chain Rule to obtain

g′(t) = `′(at)
d

dt
(at) =

1

at
· a =

1

t
, for all t > 0.

Thus, since g(1) = `(a) − `(a) = 0, it follows that g(t) solves the initial value
problem in (4.17). Consequently, since the the initial value problem in (4.17)
has a unique solution, it follows that

g(t) = `(t), for all t > 0;

in other words,

`(at)− `(a) = `(t), for all t > 0.

We have therefore established the formula

`(at) = `(a) + `(t), for all t > 0.

�

Example 4.1.4. Let ` = `(t) for t > 0 denote the unique solution to the initial
value problem (4.17) in Example 4.1.3, and let p denote a non–zero real number.
Define

h(t) =
1

p
· `(tp), for t > 0.

Compute h′(t) and show that

`(tp) = p `(t), for t > 0. (4.19)
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Solution: Apply the Chain Rule to compute

h′(t) =
1

p
· d
dt

[`(tp)]

=
1

p
· `′(tp) · d

dt
[tp]

=
1

p
· 1

tp
· p · tp−1

=
1

t
,

for all t > 0. Thus, since h(1) =
1

p
`(1) = 0, it follows that h(t) solves the initial

value problem in (4.17). Consequently, since the the initial value problem in
(4.17) has a unique solution, it follows that

h(t) = `(t), for all t > 0,

or
1

p
· `(tp) = `(t), for all t > 0,

from which we get
`(tp) = p `(t), for t > 0.

�

4.2 The Natural Logarithm Function

The formulas in (4.18) and (4.19) in Examples 4.1.3 and 4.1.4, respectively,
show that the unique solution to the initial value problem

dy

dt
=

1

t
;

y(1) = 0,
(4.20)

satisfies the properties of a logarithm. We will denote the solution to (4.20) by
ln(t), for t > 0, and call it the natural logarithm of t for t > 0. The following
properties of the natural logarithm function can be derived from its definition
and the from work we did in Examples 4.1.3 and 4.1.4.

Proposition 4.2.1 (Properties of the Natural Logarithm). Let ln(t) denote the
unique solution to the initial value problem in (4.20). Then,

(i) ln(t) =

∫ t

1

1

τ
dτ, for t > 0;
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(ii) ln(1) = 0;

(iii) ln : (0,∞)→ R is differentiable and ln′(t) =
1

t
, for all t > 0;

(iv) ln(ab) = ln a+ ln b for all a, b > 0;

(v) ln(bp) = p ln b for all b > 0 and p ∈ R,

Example 4.2.2. Define

g(u) = ln(|u|), for u 6= 0.

Compute g′(u) for u 6= 0.
Solution: Note that

|u| =

{
u if u > 0;

−u if u < 0.
(4.21)

We consider the cases u > 0 and u < 0 separately.
If u > 0, then

g(u) = ln(u),

so that

g′(u) =
1

u
, for u > 0. (4.22)

On the other hand, if u < 0, then, by the definition of |u| in (4.21),

g(u) = ln(−u),

so that, by the Chain Rule,

g′(u) = ln′(−u) · d
du

(−u) =
1

−u
· (−1) =

1

u
;

thus,

g′(u) =
1

u
, for u < 0. (4.23)

Combining the results of (4.22) and (4.23) we obtain

d

du
ln |u| = 1

u
, for all u 6= 0. (4.24)

�

The differentiation formula (4.24) that was derived in Example 4.2.2 gives
rise to the following, very useful, integration formula∫

1

u
du = ln |u|+ c. (4.25)

The integration formula in (4.25) complements the formula∫
up du =

up+1

p+ 1
+ c, for p 6= −1, (4.26)
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by indicating what happens in the case p = −1, which is not covered by (4.26).
The formulas in (4.25) and (4.26) are helpful when evaluating many integrals
by means of a change of variables. We present here several examples on how to
do that.

Example 4.2.3. Solve the initial value problem
dy

dt
= tan(t);

y(0) = 0,
(4.27)

for −π
2
< t <

π

2
.

Solution: Compute

y(t) =

∫ t

0

tan(τ) dτ =

∫ t

0

sin(τ)

cos(τ)
dτ

by making the change of variable u = cos(τ); so that, du = − sin(τ) dτ and

y(t) = −
∫ cos t

1

1

u
du

= − [ln |u|]cos t1 ,

where we have used the integration formula in (4.25); thus,

y(t) = − ln | cos t|,

Consequently, using property (v) in Proposition 4.2.1,

y(t) = ln | cos t|−1

= ln |(cos t)−1|

= ln | sec t|,

for −π
2
< t <

π

2
. Hence, the solution to the initial value problem in (4.27) is

the function y :
(
−π

2
,
π

2

)
→ R given by

y(t) = ln | sec t|, for − π

2
< t <

π

2
.

�

Example 4.2.4. Solve the initial value problem
dy

dt
=

t

1 + t2
;

y(1) = 3,
(4.28)
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for t ∈ R.
Solution: Compute

y(t) = 3 +

∫ t

1

τ

1 + τ2
dτ

by making the change of variable u = 1 + τ2; so that, du = 2τ dτ and

y(t) = 3 +
1

2

∫ 1+t2

2

1

u
du

= 3 +
1

2
[ln |u|]1+t

2

2 ,

where we have used the integration formula in (4.25); thus, the solution to the
initial value problem in (4.28) is given by

y(t) = 3 +
1

2
ln |1 + t2| − 1

2
ln |2|, for all t ∈ R,

which can be rewritten as

y(t) = 3 +
1

2
ln(1 + t2)− 1

2
ln 2

= 3− ln
√

2 + ln
√

1 + t2

for t ∈ R, by virtue of property (v) in Proposition 4.2.1. �

In the remainder of this section we study the asymptotic properties of the
natural logarithm function; in particular, we show that

lim
t→∞

ln(t) = +∞ (4.29)

and
lim
t→0+

ln(t) = −∞. (4.30)

In order to establish (4.29), we first get an estimate for ln 2. From the
definition of ln, or Property (i) in Proposition 4.2.1, we see that

ln 2 =

∫ 2

1

1

t
dt. (4.31)

Thus, geometrically, ln 2 is the area under the graph y =
1

t
above the t–axis,

and between the lines t = 1 and t = 2 (see Figure 4.2.2 on page 26). We
could approximate ln 2 by the area of the inscribed rectangles shown in Figure
4.2.3. The sum of the areas of the rectangles pictured in Figure 4.2.3 is an
underestimate for ln 2, so that

ln 2 > area of inscribed rectangles, (4.32)



26 CHAPTER 4. APPLICATIONS OF INTEGRAL CALCULUS

t

y

y =
1

t

t = 1 t = 2

Figure 4.2.2: Sketch of graph of y = 1/t

t

y

y =
1

t

t = 1 t = 2

Figure 4.2.3: Inscribed Rectangles

where

area of inscribed rectangles =
1

4

[
1

5/4
+

1

3/2
+

1

7/4
+

1

2

]

=
1

5
+

1

6
+

1

7
+

1

8

=
533

840
.

(4.33)

We therefore get from (4.32) and the result of the calculations in (4.33) that

ln 2 > 0.63. (4.34)

We are now ready to establish (4.29). For any t > 2n, for some positive
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integer n, we have that
ln t > ln(2n), (4.35)

since ln is an increasing function. Next, apply Property (v) in Proposition 4.2.1
to get from (4.35) and (4.34) that

ln t > (0.63)n. (4.36)

Thus, we can make ln t as large as we please by making t large enough. For
instance, say we want to make ln t larger than a million. Then, according to
(4.36), we need to find a positive integer n such that

n >
1, 000, 000

0.63
; (4.37)

for instance, we can take n to be 1.6×106, or 1.6 millions. Then, if t > 21600000,
by virtue of (4.36) and (4.37), we are assured that ln t > 106.

In general, given any big, positive, number M , we can find an integer, n,
such that

n >
M

0.63
. (4.38)

Then, if t > 2n, it follows from the fact that ln is an increasing function that

ln t > ln(2n) = n ln 2 > (0.63)n, (4.39)

where we have used the underestimate in (4.34). It then follows from (4.38) and
(4.39) that

t > 2n implies that ln t > M ;

in other words, we can make ln t arbitrarily large and positive by making t
sufficiently large. This is the meaning of the limit in (4.29).

In order to establish the limit in (4.30), we proceed in an analogous manner:
We can make

ln t < −M,

where M is an arbitrary large and positive number, by making

0 < t <
1

2n
, (4.40)

where n is a positive integer such that

n >
M

0.63
,

the same condition in (4.38). In fact, if (4.40) holds true, then

0 < t < 2−n,

from which we get the
ln t < ln(2−n), (4.41)
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since ln is an increasing function; consequently, using Property (v) in Proposi-
tion 4.2.1, we get from (4.41) that

ln t < −n ln 2 < −n(0.63), (4.42)

where we have used the underestimate for ln 2 in (4.34). Combining the estimate
in (4.42) with (4.38) yields that, for any positive number M , if n is a positive
integer chosen so that n > M/(0.63), the

0 < t < 2−n implies that ln t < −M,

which is equivalent to the statement in (4.30).

The limit expressions in (4.29) and (4.30), together with the continuity of
the natural logarithm function, imply that the function ln: (0,∞) → R maps
positive real numbers onto R; in other words, to every real number, y, there
corresponds a positive number t such that

ln t = y. (4.43)

In addition, since ln(t) is strictly increasing, ln is a one–to–one function; that
is, to every real number, y, there is exactly one solution, t to the equation in
(4.43).

Definition 4.2.5 (The Number e). We denote the unique solution to the equa-
tion

ln t = 1

by the symbol e; thus, e is the unique real number with the property that∫ e

1

1

τ
dτ = 1,

or

ln e = 1. (4.44)

Example 4.2.6. Find the unique solution to the equation

lnx = −1. (4.45)

Solution: Let x =
1

e
= e−1. Then, using Property (v) in Proposition 4.2.1 and

(4.44),

ln(x) = ln(e−1) = (−1) ln e = −1,

which shows that x = e−1 is the unique solution to (4.45). �



4.3. THE NUMBER % 29

4.3 The Number e

The number e is the unique real number with the property that

ln e = 1. (4.46)

In this section we obtain some estimates for e. We begin by showing that

2 < e < 3. (4.47)

In order to establish (4.47), we first obtain an upper estimate for ln 2 using the
area of the circumscribed rectangles pictured in Figure 4.3.4. The area of the

t

y

y =
1

t

t = 1 t = 2

Figure 4.3.4: Circumscribed Rectangles

circumscribed rectangles in Figure 4.3.4 is an overestimate for ln 2. We therefore
have that

ln 2 < area of circumscribed rectangles, (4.48)

where

area of circumscribed rectangles =
1

4

[
1 +

1

5/4
+

1

3/2
+

1

7/4

]

=
1

4
+

1

5
+

1

6
+

1

7

=
319

420
.

(4.49)

It follows from (4.48) and the calculations in (4.49) that

ln 2 < 1,

so that
ln 2 < ln e, (4.50)
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where we have used (4.46). Next, use the fact that ln(t) is an increasing function
of t to conclude from (4.50) that

2 < e. (4.51)

To obtain the estimate on the right of (4.51), estimate ln 3 by means of the
area of the inscribed rectangles shown in Figure 4.3.5. The area of the inscribed

t

y

y =
1

t

t = 1 t = 3

Figure 4.3.5: Inscribed Rectangles

rectangles shown in Figure 4.3.5 is an underestimate for ln 3 so that

area of inscribed rectangles < ln 3, (4.52)

where

area of inscribed rectangles =
1

5
+

1

6
+ · · ·+ 1

12

=
28271

27720
,

so that
area of inscribed rectangles > 1. (4.53)

It follows from (4.52) and (4.53) that

1 < ln 3,

so that
ln e < ln 3, (4.54)

where we have used (4.46). Thus, using the fact that ln(t) is a strictly increasing
function of t to conclude from (4.54) that

e < 3. (4.55)

Combining the estimates in (4.51) and (4.55) yields (4.47).
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In a similar manner, we can show that

2.5 < e < 2.875;

(see problems 1 and 2 in Assignment 6).
The number e is an irrational number that can be obtained as a limit of

rational numbers by means of the formula

e = lim
n→∞

(
1 +

1

n

)n
. (4.56)

Table 4.1 shows approximate values of the expression

(
1 +

1

n

)n
for n ranging

over the first seven powers of 10, where the values in the second column are
rounded up to five decimal places. We will establish formula (4.56) in Section

n

(
1 +

1

n

)n
1 2.00000
10 2.59374
100 2.70481
1000 2.71692
10000 2.71815
100000 2.71827
1000000 2.71828
10000000 2.71828

Table 4.1: The sequence

(
1 +

1

n

)n
for n = 10k, k = 0, 1, . . . , 7

4.4 of these notes after we develop some properties of the exponential function.
In the meantime, Table 4.1 shows that the five-decimal rational approximations
of the sequence of real numbers,

an =

(
1 +

1

n

)n
, for n = 1, 2, 3, . . . , (4.57)

stabilize around 2.71828 for values of n equal to or higher than 106. We can use
the value of 2.71828 as a five-decimal rational approximation to e; we write

e =̇ 2.71828, (4.58)

where the dot above the equal sign indicates that the right–hand side of (4.58)
is a rational approximation to e which is accurate to five decimal places.
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The expression

e =

∞∑
k=1

1

k!
, (4.59)

where

k! = 1 · 2 · · · (k − 1) · k

is the factorial of k, and the infinite sum on the right–hand side of (4.59) is
understood as the limit of the sequence,

sn = 1 + 1 +
1

2!
+

1

3!
+ · · ·+ 1

(n− 1)!
+

1

n!
, (4.60)

of partial sums of the infinite sum on the right–hand side of (4.59); that is,

e = lim
n→∞

n∑
k=1

1

k!
. (4.61)

Table 4.2 shows approximate values of the partial sums sn =

n∑
k=0

1

k!
rounded

up to five decimal places. Note that we only need to go up to the 8th term in the

n

n∑
k=0

1

k!

1 2.00000
2 2.50000
3 2.66667
4 2.70833
5 2.71667
6 2.71806
7 2.71825
8 2.71828

Table 4.2: The sequence

n∑
k=0

1

k!
for n = 0, 1, . . . , 8

sequence of partial sums, sn, in (4.60) to get the five–decimal approximation
to e that we got using the sequence, an, in (4.57) by going to at least the one
millionth term in the sequence.
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4.4 The Exponential Function

We saw in Section 4.2 that the natural logarithm function, ln : (0,∞) → R is
a one–to–one function which maps the set of positive real numbers onto the
set of all real numbers. It therefore has a inverse function that we denote by
exp: R→ (0,∞) and call it the exponential function.

Definition 4.4.1 (Definition of Exponential Function). We say that a positive
real number y is the exponential of t ∈ R, denoted y = exp(t), if and only if

ln y = t.

In this section we derive the main properties of the exponential function. We
will first obtain the graph of y = exp(t) by reflecting that of y = ln t in Figure
4.1.1 on the line y = t. A preliminary graph of y = exp(t) is shown in Figure
4.4.6. We see from the graph of the exponential function in Figure 4.4.6 that

y

t

y = exp(t)

Figure 4.4.6: Sketch of graph of y = exp(t)

exp(0) = 1,

the graph of y = exp(t) is always concave up, and exp(t) is a strictly increasing
function of t for all t ∈ R.

It follows from the limits in (4.29) and (4.30) and the definition of the ex-
ponential function in Definition 4.4.1 that

lim
t→+∞

exp(t) = +∞ (4.62)

and

lim
t→−∞

exp(t) = 0, (4.63)

(see also the sketch of the graph of y = exp(t) in Figure 4.4.6).



34 CHAPTER 4. APPLICATIONS OF INTEGRAL CALCULUS

Next, use the definition of the number e given in Definition 4.2.5 and Defi-
nition 4.4.1 to conclude that

exp(1) = e. (4.64)

We now turn to the differentiability properties of the exponential function.
Since exp is the inverse of the natural logarithm function, which is a differen-
tiable function whose derivative is never zero, it follows that exp is differentiable.
Furthermore, applying the Chain Rule to the expression

ln(exp(t)) = t, for all t ∈ R,

it follows that
ln′(exp(t)) · exp′(t) = 1, for all t ∈ R,

from which we get

1

exp(t)
· exp′(t) = 1, for all t ∈ R,

so that
exp′(t) = exp(t), for all t ∈ R. (4.65)

In other words, the function y(t) = exp(t) is a solution to the initial value
problem 

dy

dt
= y;

y(0) = 1,
(4.66)

for t ∈ R. We will presently show that exp(t) is the only solution to the initial
value problem in (4.66). Indeed, suppose that v = v(t) is another solution to
the initial value problem in (4.66); in other words, suppose that v : R → R is
differentiable with

v′(t) = v(t), for all t ∈ R, (4.67)

and
v(0) = 1. (4.68)

Then, consider the function

w(t) =
v(t)

exp(t)
, for all t ∈ R, (4.69)

which is well–defined since exp(t) > 0 for all t ∈ R. Furthermore, w is differen-
tiable and, by the quotient rule,

w′(t) =
exp(t)v′(t)− v(t) exp′(t)

[exp(t)]2
, for all t ∈ R. (4.70)

Next, use (4.65) and (4.67) to obtain from (4.70) that

w′(t) =
exp(t)v(t)− v(t) exp(t)

[exp(t)]2
= 0, for all t ∈ R.
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Consequently,
w(t) = c, for all t ∈ R, (4.71)

and some constant c by the result of Problem 1 in Assignment 1. Using the
initial condition in (4.68) we get from (4.69) and (4.71) that

c = w(0) =
v(0)

exp(0)
= 1;

so that, substituting the value of c = 1 on the right–hand side of (4.71), we get
from (4.69) that

v(t) = exp(t), for all t ∈ R.

We have therefore established that the initial value problem in (4.66) has the
unique solution y(t) = exp(t) for all t ∈ R. We will now derive a few conse-
quences of this fact.

Example 4.4.2. Fix a real number a and define f : R→ R by

f(t) =
1

exp(a)
· exp(a+ t), for all t ∈ R. (4.72)

Applying the Chain Rule we obtain that

f ′(t) =
1

exp(a)
· exp′(a+ t) · d

dt
(a+ t)

=
1

exp(a)
· exp(a+ t)

= f(t),

(4.73)

for all t ∈ R, where we have used (4.65) and (4.72).
It follows from the calculations in (4.73) that f solves the differential equa-

tion in (4.66). Furthermore, using (4.72), we see that

f(0) =
1

exp(a)
· exp(a) = 1,

so that f solves the initial value problem in (4.66). Since we have seen that
problem (4.66) has a unique solution, namely the exponential function exp, it
follows that

f(t) = exp(t), for all t ∈ R. (4.74)

Using (4.73) and (4.74) we then have that

exp(a+ t) = exp(a) · exp(t), for all t ∈ R. (4.75)

Example 4.4.3. Let r and yo denote a real numbers and put

g(t) = yo exp(rt), for all t ∈ R. (4.76)
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Applying the Chain Rule we obtain that

g′(t) = yo exp′(rt) · d
dt

[rt]

= r[yo exp(rt)],

(4.77)

where we have used (4.65). Combining the results of the calculations in (4.77)
with (4.76) we see that

g′(t) = rg(t), for all t ∈ R. (4.78)

Furthermore, we obtain from (4.76) that

g(0) = yo. (4.79)

Thus, it follows from (4.78) and (4.79) that

y(t) = yo exp(rt), for all t ∈ R, (4.80)

is a solution to the initial value problem
dy

dt
= ry;

y(0) = yo,
(4.81)

where r and yo are real constants. It can be shown that the function in (4.80)
is the only solution to the initial value problem in (4.81); see Problem 2 in
Assignment 7.

Example 4.4.4. In this example we derive the relation

[exp(t)]r = exp(rt), for all t ∈ R, (4.82)

and all r ∈ R.
Define the function h : R→ R by

h(t) = [exp(t)]r, for all t ∈ R, (4.83)

and note that

h(0) = 1. (4.84)

Differentiate h in (4.83) with respect to t to obtain

h′(t) = r[exp(t)]r−1 exp′(t)

= r[exp(t)]r−1 exp(t)

= r[exp(t)]r,

(4.85)
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where we have used the Chain Rule and (4.65). It follows from the calculations
in (4.85) and the definition of h in (4.83) that

h′(t) = rh(t), for all t ∈ R. (4.86)

In view of (4.86) and (4.84), we see that h solves the initial value problem (4.81),
with yo = 1, given at the end of Example 4.4.3. Since exp(rt) is the unique
solution to (4.81) (see Example 4.4.3), it follows from (4.83) and Problem 2 in
Assignment 7 that

h(t) = exp(rt), for all t ∈ R, (4.87)

which establishes (4.82) by comparing (4.87) and (4.83).

We summarize the properties of the exponential function that we have de-
rived so far in the following proposition.

Proposition 4.4.5 (Properties of the Exponential Function). Let exp(t) denote
the unique solution to the initial value problem in (4.66). Then,

(i) exp(0) = 1;

(ii) exp(1) = e;

(iii) exp: R→ (0,∞) is differentiable and exp′(t) = exp(t), for all t ∈ R;

(iv) exp(a+ b) = exp(a) · exp(b) for all a, b ∈ R;

(v) exp(ab) = [exp(a)]b for all a, b ∈ R.

Example 4.4.6. Applying properties (v) and (ii) in Proposition 4.4.5 we obtain
for the case e = 1 and b = t, for any real number t, that

exp(t) = [exp(1)]t = et, for all t ∈ R.

In view of the result of Example 4.4.6, we will adopt the following notation
for the exponential function, exp: R→ (0,∞),

exp(t) = et, for all t ∈ R. (4.88)

The equation in (4.88) gives meaning to raising the real number e to the power
t for any t ∈ R. In fact, we can use the exponential and natural logarithm
functions to give meaning to the expression ba, where b is any positive real
number and a is any real number as follows:

ba = [exp(ln b)]a = exp(a ln b). (4.89)

Using the new notation for the exponential function introduced in (4.88), we
can rephrase the properties stated in Proposition 4.4.5 as follows:

(i) e0 = 1;

(ii) e1 = e;
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(iii)
d

dt
[et] = et, for all t ∈ R;

(iv) ea+b = ea · eb for all a, b ∈ R;

(v) eab = [ea]b for all a, b ∈ R.

From the differentiation formula in (iii) we obtain integration formula∫
eu du = eu + c. (4.90)

Example 4.4.7. Define f(t) = te−t for all t ∈ R. We sketch the graph of
y = f(t).

First, we compute f ′(t) by applying the product rule and the Chain Rule to
get

f ′(t) = e−t − te−t, for all t ∈ R,

or
f ′(t) = (1− t)e−t, for all t ∈ R. (4.91)

Since e−t > 0 for all t, it follows from (4.91) that f ′(t) > 0 for t < 1, and
f ′(t) < 0 for t > 1. Thus, f(t) increases for t < 1 and decreases for t > 1. Thus,
f has a local maximum at t = 1. The value of the local maximum is f(1) = 1/e.

Next differentiate f ′(t) in (4.91) with respect to t to obtain from (4.91) that

f ′′(t) = (t− 2)e−t, for all t ∈ R, (4.92)

where we have applied the product rule and the Chain Rule. We then obtain
from (4.92) that f ′′(t) < 0 for t < 2, and f ′′(t) > 0 for t > 2, so that the graph
of y = f(t) is concave down for t < 2 and concave up for t > 0. The graph
of y = f(t) then has an inflection point at (2, 2/e2). A sketch of the graph
of y = te−t, for t ∈ R, is shown in Figure 4.4.7. The sketch in Figure 4.4.7

y

t

y = te−t

Figure 4.4.7: Sketch of graph of y = te−t

incorporates information gained from the fact that

lim
t→∞

te−t = 0,
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which can be obtained by applying L’Hospital’s Rule:

lim
t→∞

te−t = lim
t→∞

t

et
= lim
t→∞

1

et
= 0.

Example 4.4.8. Find the area under the graph of y = e−t, for t ∈ R, bounded
by the coordinates axes and the line t = 1.
Solution: The region under consideration is sketched in Figure 4.4.6. The area

y

t

y = e−t

t = 1

Figure 4.4.8: Sketch of graph of y = e−t

of the region is given by

A =

∫ 1

0

e−t dt. (4.93)

Making the change of variables u = −t, so that du = −dt, we obtain from (4.93)
that

A = −
∫ −1
0

eu du

=

∫ 0

−1
eu du;

(4.94)

Thus, using the integration formula in (4.90), we obtain from (4.94) that

A = [eu]
0
−1 = 1− e−1.

�

4.5 The Number e Revisited

In this section we use the properties of the natural logarithm and exponential
functions that we have developed in the previous sections to establish (4.56);
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namely,

lim
n→∞

(
1 +

1

n

)n
= e. (4.95)

Making the change of variables h = 1/n, so that h→ 0 as n→∞, we see that
(4.95) is equivalent to

lim
h→0

(1 + h)
1/h

= e. (4.96)

In the process of deriving (4.96) we will develop a method that is useful in
computing other limits similar to those in (4.95) and (4.96).

We begin by defining the function setting

f(h) = (1 + h)
1/h

, (4.97)

so that

ln[f(h)] =
1

h
ln(1 + h), for h > −1, and h 6= 0, (4.98)

where we have used property (v) in Proposition 4.2.1. Observe that, by property
(i) in Proposition 4.2.1, we can rewrite (4.98) as

ln[f(h)] =
ln(1 + h)− ln(1)

h
, for h > −1, and h 6= 0. (4.99)

It follows from (4.99) and the definition of the derivative of ln t at t = 1 that

lim
h→0

ln[f(h)] = lim
h→0

ln(1 + h)− ln(1)

h
= ln′(1) = 1. (4.100)

Now, it follows from (4.98) and the definition of the exponential function that

f(h) = exp(ln[f(h)]), for h > −1, and h 6= 0. (4.101)

Next, use the continuity of the exponential function and (4.101) to conclude
from (4.100) that the lim

h→0
f(h) exists and equals

lim
h→0

f(h) = exp

(
lim
h→0

ln[f(h)]

)
= exp(1) = e, (4.102)

where we have used property (ii) in Proposition 4.4.5. Combining (4.102) and
(4.97), we obtain (4.96), which was to be shown.

Alternatively, we could have computed the limit in (4.100) by applying
L’Hospital’s rule; in fact, since

lim
h→0

ln(1 + h) = ln(1) = 0 and lim
h→0

h = 0,

L’Hospital’s rule does apply to this situation and

lim
h→0

ln[f(h)] = lim
h→0

ln(1 + h)

h

= lim
h→0

1

1 + h
1

= 1.
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The procedure illustrated here can be used to compute limits of expressions
in which the variable appears in the exponent. First, compute the natural
logarithm of the expression. Then, compute the limit of the natural logarithm
of the expression. If the limit of the natural logarithm of the expression exists,
then the limit of the original expression exists and equals the exponential of the
limit of the logarithmic expression.

Example 4.5.1. Let r denote a real number. Compute lim
h→0

(1 + rh)1/h.

Solution: Put g(h) = (1 + rh)1/h so that

ln[g(h)] =
ln(1 + rh)

h
.

Next, use L’Hospital’s Rule to compute

lim
h→0

ln[g(h)] = lim
h→0

ln(1 + rh)

h

= lim
h→0

1

1 + rh
· d
dh

(1 + rh)

1

= lim
h→0

r

1 + rh
1

= r.

(4.103)

Consequently,

lim
h→0

g(h) = lim
h→0

exp(ln[g(h)])

= exp( lim
h→0

ln[g(h)])

= exp(r),

where we have used the continuity of the exponential function and the results
of the calculations in (4.103). We have therefore proved that

lim
h→0

(1 + rh)1/h = er. (4.104)

�

By making the change of variables n = 1/h, so that n → ∞ as h → 0, we
obtain from (4.104) that

lim
n→∞

(
1 +

r

n

)n
= er. (4.105)
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4.6 Analysis of the Malthusian Model

In this section we solve the Malthusian model (2.12),

dN

dt
= aN, (4.106)

where
a = b− d, (4.107)

the difference of the per-capita birth and death rates, for the case in which b
and d are constant. We will solve (4.106) subject to the initial condition

N(to) = No; (4.108)

that is, the population size is known at some initial time to. We are thus lead
to the study of the initial value problem

dN

dt
= aN ;

N(to) = No,
(4.109)

where a is a real constant.
The initial value problem in (4.109) has the unique solution given by

N(t) = Noe
a(t−to), for t ∈ R, (4.110)

(see Problem 5 in Assignment 8).
We study the behavior of the solution in (4.110) for the case to = 0, No > 0

and various values of (constant) per–capita growth rate a.
First, assume that a > 0; according to (4.107), this case correspond to a

situation in which the (constant) per–capita birth rate, b, is higher than the
per–capita death rate, d. In this case the Malthusian model in (4.106) predicts
unlimited, exponential growth as pictured in Figure 4.6.9. If a = 0, the model
in (4.106) predicts that the population size will remain constant, as shown in
Figure 4.6.10. This corresponds to the situation in which the birth and death
rates are exactly the same and cancel each other one generating a situation that
can be said to be at equilibrium.

Finally, if a < 0, the model (4.106) predicts the situation sketched in Figure
4.6.11, which corresponds to exponential decay. In this case, the Malthusian
model predicts that the population will go extinct.

Example 4.6.1 (Doubling Time). Suppose that a > 0 for the Malthusian
model in (4.109), where to = 0. Then, according to (4.110), the population size
at any time t ∈ R is given by

N(t) = Noe
at, for t ∈ R. (4.111)

We can use (4.111) to find the time, t = τ2, at which the population size is
double that of the initial population; in other words,

N(τ2) = 2No. (4.112)
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N

t

No

Figure 4.6.9: Sketch of graph of N = N(t) for a > 0

N

t

No

Figure 4.6.10: Sketch of graph of N = N(t) for a = 0

Substituting τ2 for t in (4.111) and using (4.112) we can write the equation

Noe
aτ2 = 2No. (4.113)

Canceling No from both sides of (4.113) leads to the equation

eaτ2 = 2, (4.114)

which can be solved for τ2 by taking the natural logarithm function on both
sides of (4.114) to yield

τ2 =
ln 2

a
. (4.115)

The expression in (4.115) defines the doubling time of a population undergoing
Malthusian growth at a constant per–capita growth rate a > 0. The equation in
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N

t

No

Figure 4.6.11: Sketch of graph of N = N(t) for a < 0

(4.115) can also be used to obtain a expression for the per–capita growth rate
in terms of the doubling time,

a =
ln 2

τ2
. (4.116)

Example 4.6.2. Certain strand of E. Coli bacteria has a division cycle that
lasts about 20 minutes. We can use this time as a measure of the doubling time,
τ2. Then, using (4.116) and measuring the time in hours, we have that, under
the assumption of Malthusian growth, the per–capita growth rate of a bacteria
colony would be

a =
ln 2

1/3
=̇ 2.08

in units of one per hour. Thus, the population size at time t (in hours) of the
bacterial colony is

N(t) =̇ Noe
2.08t, (4.117)

where No is the size of the population at time t = 0.

Example 4.6.3. Suppose a population growing under a Malthusian growth
model has a doubling time τ2. We then have that

N(t) = Noe
at, (4.118)

where a is given by (4.115). Substituting the expression for a in (4.115) into
(4.118) yields

N(t) = No exp

(
ln 2

τ2
t

)

= No exp

(
ln 2

t

τ2

)
= No[exp(ln 2)]t/τ2 ,

(4.119)
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where we have used property (v) in Proposition 4.4.5. In then follows from the
definition of the exponential in Definition 4.4.1 and the calculations in (4.119)
that

N(t) = No2
t/τ2 , for t > 0. (4.120)

If we now measure time in units of doubling time (e.g., in units of division cycles
for bacterial populations), we obtain from (4.120) that

N(τ) = No2
τ ,

where τ =
t

τ2
measures the number of doubling times since time t = 0.

Example 4.6.4. Suppose that a single cell of the bacterium E. coli divides
every twenty minutes. Given that the average mass of an E. coli bacterium is
10−12 grams, if a cell of E. coli was allowed to reproduce without restrain to
produce a mega–colony, estimate the time that it would take for the total mass
of the bacterial colony to be that of the earth (approximately 6×1024 Kg). (For
this example, assume a Malthusian growth model.)

Solution: We use equation (4.117) derived in Example 4.6.2, with No = 1. We
then have that the size of the colony at time t (in hours) is given by

N(t) =̇ e2.08t, (4.121)

for t hours after t = 0.
First, find the number, N , of bacteria that are needed to come up with the

mass of the earth; that is we need to solve the equation

10−12N = 6× 1027,

(in grams), which yields

N = 6× 1039. (4.122)

Next, we find the time t so that

N(t) = N,

or, using (4.121) and (4.122),

e2.08t = 6× 1039,

which can be solved for t to yield

t =̇
ln 6 + 39 ln(10)

2.08
=̇ 44 hours.

Thus, it would take about a day and 20 hours (under 2 days) for the the total
mass of the bacterial colony to be that of the earth. �
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4.7 Testing the Malthusian Model

The calculations presented in Example 4.6.4 illustrate in a dramatic way the
inadequacy of the Malthusian model to predict the growth of microorganisms.
The results are not surprising given that the Malthusian model used in the
calculations does not take into account competition for resources and availability
of nutrients. The next step in the modeling is to account for the effects of
nutrient concentration in a bacterial colony, for instance, in the growth rate of
the bacteria.

Time Concentration
(hours) (OD650)

0.0 0.032
0.5 0.039
1.0 0.069
1.5 0.110
2.0 0.170
2.5 0.229
3.0 0.261
3.5 0.288
4.0 0.309
4.5 0.327
5.0 0.347

Table 4.3: Staphylococcus aureus Growth Data

Before we proceed with modifying the Malthusian model, in this section
we illustrate how to test a model against actual experimental data. Table 4.3
displays data on the growth of Staphylococcus aureus collected by Segall, A. and
Gunderson, C. in the Department of Biology, San Diego State University, 2004,
(unpublished data1).

The second column in Table 4.3 shows optical density measurements (OD650)
that are proportional to the number of bacteria in the culture.

We have plotted the data in Table 4.3 in a scatter plot using MS Excel. The
plot is shown in Figure 4.7.12. We see from the plot in Figure 4.7.12 that bacteria
in the experiment do not seem to be undergoing exponential growth; in fact, the
shape of a smooth curve going through the data points is similar to that of the
s–shaped curve that characterizes logistic growth (see for instance the sketches
in Figure 3.1.2). We will see in a later section how to fit the data in Table 4.3
to the logistic model in (2.16). In this section, though, we will illustrate the
procedure that we will follow then to fit the data in Table 4.3 to the Malthusian
model in (2.12). In addition to learning how to fit data to a mathematical model,
we will also learn how far the data in Table 4.3 diverges from the predictions of
the Malthusian model. We will also see that, at the beginning of the process (in

1see also http://www-rohan.sdsu.edu/̃ jmahaffy/courses/f11/math122/index.html
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Figure 4.7.12: Staphylococcus aureus Growth Data Scatter Plot

particular, within the first two hours in the experiment), the Malthusian model
provides a very good fit to the data.

When fitting the exponential model

N(t) = Noe
at, for t ∈ R, (4.123)

to a set of observations, it is convenient to consider the equation

lnN = ln(No) + at, for t ∈ R, (4.124)

which is obtained by taking the natural logarithm on both sides of (4.123). It
follows, then, that if the data are in accord with the Malthusian model, then
a plot of lnN versus t should yield a scatter plot with a strong linear trend.
For the case of the data in Table 4.3, we compute the natural logarithm of the
optical density values in the second column to obtain the values shown in Table
4.4. Figure 4.7.13 shows a scatter plot of the data in Table 4.4. The plot in
Figure 4.7.13 also shows the best fitting line through the data (least–squares
fit), namely, the straight line with equation

y = −3.1263 + 0.4959 t. (4.125)

The value of R2 = 0.883 is also displayed in Figure 4.7.13; R2 gives a measure of
how likely the linear model is able to predict future outcomes in the experiment.
In this case, R2 is 88.3%, which is not too bad of a percentage; however, it is
not very good either. This is not surprising given the information provided in
the plot in Figure 4.7.13; although there is an increasing trend in the data, the
nature of the trend is not necessarily captured by the linear model. Nevertheless,
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Time ln(OD650)
(hours)

0.0 −3.442
0.5 −3.244
1.0 −2.674
1.5 −2.207
2.0 −1.772
2.5 −1.474
3.0 −1.343
3.5 −1.245
4.0 −1.174
4.5 −1.118
5.0 −1.058

Table 4.4: Log of Concentration for Staphylococcus aureus Growth Data

y = 0.4959x - 3.1263 
R² = 0.883 
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Figure 4.7.13: Staphylococcus aureus Log Growth Data Linear Fit
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for the sake of illustration, we proceed with the process of fitting the data in
(4.3) to the Malthusian model.

Comparing the least–squares fit line in (4.125) with the linear model in
(4.124), we obtain estimates for lnCo, where Co is the initial concentration of
bacteria, and the per–capita growth rate, a, of the population as follows:

lnCo =̇ − 3.1263 (4.126)

and
a =̇ 0.4959. (4.127)

From (4.126) we obtain that
Co =̇ 0.044.

Thus, the Malthusian model yields the following predicted values for optical
density measurements,

C(t) =̇ (0.044)e0.4959 t, for t > 0. (4.128)

The predicted values are computed from (4.128) for the times in the first column
of Table 4.3 and plotted, using MS Excel, together with the observed values in
the second column of the table. The resulting plot is shown in Figure 4.7.14.
An examination of the plot in Figure 4.7.14 reveals that the Multhus fit of the
data in Table 4.3 begins to diverge drastically from the observed values after the
fourth hour in the experiment. The plot also shows that the Malthusian model
provides a good fit to the data at the very beginning. In We will next illustrate
this by fitting the first six data points in Table 4.3 to the Malthusian model; in
other words, we will determine an exponential fit to the data in the following
table A plot of the natural logarithm of the optical density measurements in the

Time Concentration
(hours) (OD650)

0.0 0.032
0.5 0.039
1.0 0.069
1.5 0.110
2.0 0.170
2.5 0.229

Table 4.5: Staphylococcus aureus Growth Data (first six observations)

second column of Table 4.5 versus time is shown in Figure 4.7.15. The plot in
Figure 4.7.15 also shows with a least–squares linear fit of the natural logarithm
of the second column of Table 4.5 versus t. We see that the R2 value of this fit
is 98.8%, which shows that the linear model in this case has a lot of predictive
power. An examination of the plot also shows that the linear fit is very good.
The least–squares linear fit shown in Figure 4.7.15 has the equation

y = −3.5205 + 0.8413 t,
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Figure 4.7.14: Staphylococcus aureus Fitting the Malthus Model to the Data in
Table 4.3

y = 0.8413x - 3.5205 
R² = 0.9881 
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Figure 4.7.15: Staphylococcus aureus Linear Fit of the log of second column in
Table 4.5 versus t



4.7. TESTING THE MALTHUSIAN MODEL 51

which gives us the estimates

lnCo =̇ − 3.5205 (4.129)

and

a =̇ 0.8413. (4.130)

From (4.129) we obtain that

Co =̇ 0.030. (4.131)

In this case we obtain, using (4.130) and (4.131), the following predicted values
for optical density measurements,

C(t) =̇ (0.030)e0.8413 t, for t > 0. (4.132)

A plot of the values predicted by (4.132) alongside the observed values in Table
4.5 is shown in We see in the plot in Figure 4.7.16 that the Malthusian model
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Figure 4.7.16: Malthus Fit of first six measurements in Staphylococcus aureus
data

provides a very good fit to the first six data points in the Staphylococcus aureus
data in Table 4.3.
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4.8 Linear First Order Differential Equations

The differential equations

dQ

dt
= ciFi −

Fo
V

Q.

and
dN

dt
= aN,

derived in Sections 2.1 and 2.2, respectively, are exaples of first order linear
differential equation. In general, a first order linear differential equation is of
the form

dy

dt
= a(t)y + b(t), (4.133)

where a = a(t) and b = b(t) are continuous functions of t defined on some
interval I. Note that the logistic equation

dN

dt
= rN − r

K
N2,

also derived in Section 2.2, is not linear; it is, however, a first order differential
equaition

In this section we will see how to obtain a general solution to the linear first
order differential equation in (4.133). We will also show that if a(t) and b(t)
are continuous on an open interval, I, to ∈ I, and yo ∈ R, then the initial value
problem 

dy

dt
= a(t)y + b(t)

y(to) = yo,
(4.134)

has a unique solution y = y(t) defined for t ∈ I.

4.8.1 Linear Equation with Constant Coefficients

We will first consider the case in which the coefficient functions a and b on the
right–hand side of (4.133) are constant, and a 6= 0; in other words, we will first
see how to solve the first order differential equation

dy

dt
= ay + b, (4.135)

where a and b are real numbers with a 6= 0.
Since a 6= 0, we can factor a on the right–hand side of (4.135) to obtain

dy

dt
= a

(
y +

a

b

)
. (4.136)

Next, set

y = − b
a
, (4.137)
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so that (4.136) becomes
dy

dt
= a (y − y) . (4.138)

We will show how to solve the differential equation in (4.138) by means of
a method known as separation of variables. The idea behind the method of
solutions is to re–write the differential equation as an integral equation where
the variables y and t are on different sides of the equation. For the equation in
(4.138), the corresponding integral equation is∫

1

y − y
dy =

∫
a dt. (4.139)

Evaluating the indefinite integrals on each side of (4.139) yields

ln |y − y| = at+ c1, (4.140)

for arbitrary constant c1. We see that we can solve for y in (4.140) by, first,
applying the exponential function on both sides of the equation in (4.140) to
obtain

|y − y| = c2e
at, (4.141)

where we have set c2 = ec1 ; then, re–write the equation in (4.141) as

|e−at(y − y)| = c2, for all t ∈ R. (4.142)

Finally, as a consequence of the continuity of the exponential function and of y,
we obtain from (4.142) that

e−at(y − y) = c, for all t ∈ R, (4.143)

and an arbitrary constant c; we can then solve (4.143) for y = y(t) to obtain

y(t) = y + ceat, for all t ∈ R. (4.144)

The expression in (4.144) gives what is known as the general solution to the
differential equation in (4.135); it gives all possible solutions of the equation
obtained by the method of separation of variables in terms of the parameter c.
In order to find a solution of (4.135) which satisfies the initial condition

y(to) = yo, (4.145)

we find the value of c in (4.144) by solving the equation

y + ceato = yo

to obtain
c = (yo − y)e−ato . (4.146)

Substituting the value for c in (4.146) into (4.144) yields the function

y(t) = y + (yo − y)ea(t−to), for all t ∈ R. (4.147)
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We will presently show the the function y = y(t) given in (4.147), where y is
defined in (4.137), is the only solution to the initial value problem

dy

dt
= ay + b;

y(to) = yo,
(4.148)

for a, b ∈ R, with a 6= 0. In fact, let v = v(t) denote any solution to the initial
value problem (4.148); then,

v′(t) = av(t) + b, for all t ∈ R, (4.149)

and
v(to) = yo. (4.150)

Define w : R→ R by

w(t) = [v(t)− y]e−a(t−to), for all t ∈ R. (4.151)

The function, w, defined in (4.151) is differentiable, and its derivative, by virtue
of the product rule and the Chain Rule, is

v′(t) = v′(t)e−a(t−to) − a[v(t)− y]e−a(t−to)

= [v′(t)− av(t) + ay]e−a(t−to)

= [b− b]e−a(t−to)

= 0,

(4.152)

for all t ∈ R, where we have used (4.149) and (4.137). It follows from the result
of the calculations in (4.152) and Problem 1 in Assignment #1 that

w(t) = c, for all t ∈ R, (4.153)

and some constant c. We can find the value of c in (4.153) by using the initial
condition in (4.150) to obtain, using (4.151) that

c = w(to) = [v(to)− y]e−a(to−to) = yo − y. (4.154)

Combining (4.154), (4.153) and (4.151) yields

[v(t)− y]e−a(t−to) = yo − y, for all t ∈ R,

from which we get that

v(t) = y + (yo − y)ea(t−to), for all t ∈ R,

which shows that the function given in (4.147) is the only solution to initial
value problem in (4.148). Hence, the initial value problem in (4.148) has a
unique solutions which is defined for all values of t ∈ R.
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Example 4.8.1 (Newton’s Law of Cooling). Let u = u(t) denote the temper-
ature of an object in an environment with fixed temperature u. If the object’s
temperature is higher than the ambient temperature, u, heat energy will be
transferred from the object to the environment causing the temperature of the
object, u(t), to decrease with time. In some situations, the cooling of the object
can by described by Newton’s Law of Cooling, which states that the rate of
change of the object’s temperature is proportional to the difference between the
objects’s temperature and that of the surrounding environment. Assuming that
the ambient’s temperature remains constant, Newton’s Law of Cooling can be
written in symbols as

du

dt
= −k(u− u), (4.155)

where k denotes a (positive) constant of proportionality. Note that the equation
in (4.155) also describes the rate of heating of the object in case that the object’s
temperature is smaller than the ambient temperature.

The equation in (4.155) is a linear differential equation with constant coeffi-
cients of the type we have been studying in this section. We can solve it using
separation of variables to obtain

u(t) = u+ ce−kt, for all t, (4.156)

where c is a constant. If the temperature of the object at time t = 0 is known,
say u(0) = uo, we obtain from (4.156) that

u(t) = u+ (uo − u)e−kt, for all t ∈ R. (4.157)

Figure 4.8.17 shows sketches of graphs of possible solutions of (4.155) for various
initial temperatures.

t

u

u

Figure 4.8.17: Sketch of graph of u = u(t)
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4.8.2 Qualitative Analysis of the Linear First Order Equa-
tion

The value y given in (4.137) is called an equilibrium solution to the equation

dy

dt
= ay + b,

for a 6= 0, or equivalently, of the equation

dy

dt
= a(y − y). (4.158)

In general, given a noncontinuous function, g : R → R, an equilibrium point of
the differential equation

dy

dt
= g(y) (4.159)

is a solution of the equation
g(y) = 0.

We saw in Section 4.8 that the solution to the differential equation in (4.158)
satisfying the initial condition y(0) = yo is given by (4.147); namely,

y(t) = y + (yo − y)eat, for all t ∈ R. (4.160)

From (4.160) we obtain

|y(t)− y| = |yo − y|eat, for all t ∈ R. (4.161)

Since we are assuming that a 6= 0, there are two possible behaviors that the
solution y = y(t) can have around the equilibrium point y. First, if a > 0 we see
from (4.161) that, for yo 6= y, the distance from y(t) to y increases as t increases.
In this case we say that the equilibrium point, y, is unstable. In general, we
say that an equilibrium point, y, is unstable when solutions to the differential
equation in (4.159) that begin near y tend away from y.

On the other hand, if a < 0, we see from (4.161) that |y(t) − y| decreases
as t increases; so that, if a < 0, solutions to the differential equation that begin
near y will tend towards y. It this case we say that y is stable. In fact, not
only is y(t) tending closer to y as t increases, but, in the limit at t → ∞, y(t)
will tend to y as seen from (4.161); namely,

lim
t→∞

|y(t)− y| = 0, (4.162)

since a < 0. When (4.162) happens we say that y is asymptotically stable.

4.8.3 Linear Equations with Variable Coefficients

We continue with the analysis of the the general linear first order equation in
(4.133); namely,

dy

dt
= a(t)y + b(t), (4.163)
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where a = a(t) and b = b(t) are continuous functions of t defined on some
interval I. We first consider the following example.

Example 4.8.2. Find the general solution to the first order differential equation

dy

dt
= y + t, (4.164)

and then find a solution to the initial value problem
dy

dt
= y + t;

y(0) = 0.

(4.165)

The method of separation of variables does not apply to the equation in
(4.164); however, we can rewrite it in the form

dy

dt
− y = t. (4.166)

Next, multiply both sides of the equation in (4.166) by e−t to obtain

e−t
dy

dt
− e−ty = te−t. (4.167)

Note that, by virtue of the product rule, the left–hand side of the equation in
(4.167) can be written as

d

dt

[
e−ty

]
,

so that the equation in (4.167) can now be written in the form

d

dt

[
e−ty

]
= te−t. (4.168)

Thus, even though we were not able to separate variables in the equation in
(4.164), by introducing the factor e−t, the equation can be written in a form
that can be solved for y by integration. In fact, integrating on on both sides of
(4.168) we obtain that

e−ty =

∫
te−t dt+ c, (4.169)

where c is an arbitrary constant. Denoting the indefinite integral on the right–
hand side of (4.169) by W (t), we obtain

e−ty = W (t) + c, (4.170)

We may take W (t) to be

W (t) =

∫ t

0

τe−τ dτ, for all t, (4.171)
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so that
W (0) = 0. (4.172)

Solving (4.170) for y we obtain the general solution

y(t) = c et + etW (t), for all t ∈ R. (4.173)

Using the initial condition y(0) = 0 we obtain from (4.173) that

c+W (0) = 0,

so that, using (4.172), c = 0 and therefore, by virtue of (4.173),

y(t) = etW (t), for all t ∈ R, (4.174)

solves the initial value problem in (4.165).

4.8.4 Integration by Parts

To complete the solution to the initial value problem (4.165) in Example 4.8.2,
we need to evaluate the integral defining W (t) in (4.172). We do this by employ-
ing an integration technique known as integration by parts. This technique
is a consequence of the product rule: Suppose f : I → R and g : I → R are
two functions which are differentiable on an open interval I, then the product
function fg : I → R is differentiable on I and

d

dt
[f(t)g(t)] = f(t)g′(t) + f ′(t)g(t), for all t ∈ I. (4.175)

Next, integrate with respect to t on both sides of (4.175) and use the Funda-
mental Theorem of Calculus to obtain

f(t)g(t) =

∫
f(t)g′(t) dt+ f ′(t)g(t) dt,

from which we obtain∫
f(t)g′(t) dt = f(t)g(t)−

∫
g(t)f ′(t) dt. (4.176)

The formula in (4.176) allows one to express the integral on the left–hand side,
which might be difficult to evaluate by hand, in terms of another integral, which
might be easier to do. We will illustrate the use of the formula in (4.176) when
evaluating the integral defining W (t) in (4.170). Before we do so, though, we
will rewrite the formula in terms of differentials du = f ′(t) dt and dv = g′(t) dt,
where we have set u = f(t) and v = g(t). In terms of the new variables and
differentials, the formula in (4.176) becomes∫

u dv = uv −
∫
v du. (4.177)

The formula in (4.177) is easier to remember, and is also easier to apply.
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Example 4.8.3. Evaluate the indefinite integral

∫
te−t dt.

Solution: Set
u = t and dv = e−t dt;

then du = dt and v = −e−t,

so that, applying the integration by parts formula in (4.177),∫
te−t dt = −te−t +

∫
e−t dt. (4.178)

Next, evaluate the integral on the right–hand side of (4.178) to get∫
te−t dt = −te−t − e−t + c, (4.179)

where the constant c is arbitrary. �

Using the result in Example 4.8.3 we can evaluate the function W (t) defined
in (4.172) to obtain

W (t) =

∫ t

0

τe−τ dτ

=
[
−τe−τ − e−τ

]t
0

= 1− te−t − e−t,

so that, in view of (4.174),

y(t) = etW (t) = et − t− 1, for all t ∈ R,

solves the initial value problem in (4.165). In the following section we will show
that this is the only solution to the initial value problem.

4.8.5 Integrating Factors

In Example 4.8.2 we saw how to go from the first–order differential equation

dy

dt
= y + t (4.180)

to the equation
d

dt

[
e−ty

]
= te−t (4.181)

by multiplying the equation
dy

dt
− y = t (4.182)

by e−t. The function µ(t) = e−t is an example of an integrating factor.
Multiplying the equation in (4.182) by µ(t) allows one to write the equation in
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(4.180) in the form in (4.181), which can be integrated and then solved for y.
In this section we see that the method of finding an integrating factor can be
used to find a solution to the initial value problem

dy

dt
= a(t)y + b(t);

y(to) = yo,

(4.183)

where a = a(t) and b = b(t) are continuous functions defined in an open interval,
I, with to ∈ I and yo ∈ R.

Rewrite the differential equation in (4.183) as

dy

dt
− a(t)y = b(t), (4.184)

and multiply both sides of the equation in (4.184) by

µ(t) = exp(−A(t)), for t ∈ I, (4.185)

where A is an antiderivative of a; that is,

A′(t) = a(t), for all t ∈ I, (4.186)

to obtain from (4.184) that

µ(t)
dy

dt
− a(t)µ(t)y = µ(t)b(t), for all t ∈ I. (4.187)

Now, it follows from (4.185) and (4.186) that

µ′(t) = −a(t)µ(t), for all t ∈ I. (4.188)

Thus, the equation in (4.187) may be written as

µ(t)
dy

dt
+ µ′(t)y = µ(t)b(t), for all t ∈ I,

which, by virtue of the product rule, may in turn be written as

d

dt
[µ(t)y] = µ(t)b(t), for all t ∈ I. (4.189)

The equation in (4.189) may now be integrated with respect to t and then solved
for y to obtain the general solution to the differential equation in (4.183).

Example 4.8.4. Find the general solution to the differential equation

dy

dt
= −2

t
y + e−t, for t > 0. (4.190)
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Solution: Rewrite the equation in (4.190) as

dy

dt
+

2

t
y = e−t, for t > 0. (4.191)

In this case, an integrating factor is provided by

µ(t) = exp

(∫
2

t
dt

)
= exp (2 ln t)

= exp
(
ln(t2)

)
= t2,

for t > 0. Thus, multiplying on both sides of (4.191) by µ(t) = t2, for t > 0,
yields

t2
dy

dt
+ 2ty = t2e−t, for t > 0.

which can be written as

dy

dt

[
t2y
]

= t2e−t, for t > 0, (4.192)

by virtue of the product rule.
Next, integrate (4.192) with respect to t to get

t2y = −t2e−t − 2te−t − 2e−t + c, for t > 0, (4.193)

and for arbitrary c, where we have used integration by parts (twice) to obtain
the antiderivative on the right–hand side of (4.193).

Finally, solving for y in (4.193) yields the general solution

y(t) = −e−t − 2

t
e−t − 2

t2
e−t +

c

t2
, for t > 0. (4.194)

�

In order to obtain a solution to the initial value problem in (4.183), it is
convenient to choose A so that

A(to) = 0; (4.195)

in other words

A(t) =

∫ t

to

a(τ) dτ, for all t ∈ I.

It then follows from (4.185) and (4.195) that

µ(to) = 1. (4.196)
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Next, integrate the differential equation in (4.189) from to to t in I to obtain∫ t

to

d

dτ
[µ(τ)y(τ)] dτ =

∫ t

to

µ(τ)b(τ) dτ. (4.197)

The integral on the left–hand side of (4.197) can be evaluated using the Funda-
mental Theorem of Calculus to yield

µ(t)y(t)− µ(to)y(to) =

∫ t

to

µ(τ)b(τ) dτ, for t ∈ I. (4.198)

Using the initial condition in (4.183) and (4.196), we obtain from (4.198) that

µ(t)y(t) = yo +

∫ t

to

µ(τ)b(τ) dτ, for t ∈ I. (4.199)

We can now solve of y(t) in (4.199) by dividing by µ(t) = exp(−A(t)) to obtain

y(t) = yo exp(A(t)) + exp(A(t))

∫ t

to

exp(−A(τ))b(τ) dτ, for t ∈ I. (4.200)

It can be verified, through application of the Fundamental Theorem of Calcu-
lus, the Chain Rule and the product rule, that the function y = y(t) defined
in (4.200) solves the initial value problem in (4.183) for the linear first order
equation in (4.163) for continuous coefficients a = a(t) and b = b(t) defined for
t ∈ I. It can also be proved by techniques similar to the ones discussed in these
notes that the formula in (4.200) provides the only solution to the initial value
problem in (4.183).

4.9 Solving the Logistic Equation

In this section we compute a solution to the initial value problem for the Logistic
equation 

dN

dt
= rN

(
1− N

K

)
;

N(0) = No,

(4.201)

for No > 0. We will present two ways to solve the equation in (4.201). The
first way involves a change of variables that allows us to relate a solution of the
initial value problem in (4.201) that of of an initial value problem for a linear
first order equation. Thus, in the firs method of solution we will be able to
use the results that we developed in the previous section for linear differential
equations. In particular, we will be able to use the uniqueness of the solution
for the initial value problem for the linear equation to conclude that the initial
value problem in (4.201) has a unique solution for each No > 0.

The second method for solving the logistic equation involves separation of
variables and an integration technique known as partial fractions. This so-
lution technique does not yield uniqueness; however, it can be applied to large
class of differential equations.
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4.9.1 Existence and Uniqueness

We look for a solution of the initial value problem in (4.201) for the case No > 0.
Suppose for the moment that we have found that solution and denote it by
N = N(t); then,

N ′(t) = rN(t)

(
1− N(t)

K

)
(4.202)

for t in some interval of existence, J , which contains 0; and

N(0) = No (4.203)

Since we are assuming that No > 0, we may also assume that N(t) > 0 for t in
some portion of J that contains 0; denote that portion by I, so that

N(t) > 0, for t ∈ I. (4.204)

Define a new function u = u(t), for t ∈ I, by

u(t) =
1

N(t)
, for t ∈ I. (4.205)

Then, u = u(t) is differentiable in I and, by the Chain Rule,

du

dt
= − 1

[N(t)]2
N ′(t)

= − 1

[N(t)]2
rN(t)

(
1− N(t)

K

)

= −r
(

1

N(t)
− 1

K

)
,

(4.206)

where we have used (4.202). It follows from the calculation in (4.206) and the
definition of u = u(t) in (4.205) that u solves the differential equation

du

dt
= −r

(
u− 1

K

)
. (4.207)

The equation in (4.207) is a linear first–order equation with constant coefficients
that has general solution

u(t) =
1

K
+ c e−rt, (4.208)

for arbitrary c, which is defined for all values of t. Using the initial condition in
(4.203) we see from (4.208) that

1

K
+ c =

1

No
,

which yields that

c =
1

No
− 1

K
. (4.209)
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Substituting the value for c in (4.209) into (4.208) yields

u(t) =
1

K
+

(
1

No
− 1

K

)
e−rt. (4.210)

The function u = u(t) defined in (4.210) is the unique solution to the initial
value problem 

du

dt
= −r

(
u− 1

K

)
;

N(0) =
1

No
,

(4.211)

for No > 0.
From (4.210) and (4.205) we obtain the following formula for N(t):

N(t) =
1

u(t)
=

NoK

No + (K −No)e−rt
. (4.212)

We can verify directly that the function N = N(t) given by the formula in
(4.212) does satisfy the differential equation in the initial value problem (4.201).
It is also not hard to see that N(0) = No. Thus, the function N = N(t) solves
the initial value problem (4.201).

We observe from (4.212) that for the case in which 0 < No < K, the function
N = N(t) given in (4.212) is defined for all values of t ∈ R. To see why this
assertion is true, observe that, since No < K, K −No > 0 so that

No + (K −No)e−rt > 0, for all t ∈ R;

that is, the denominator of the expression in (4.212) defining N(t) is never 0.
On the other hand, for the case in which No > K, the denominator of the

expression in (4.212) is zero when

No = (No −K)e−rt, (4.213)

or, solving for t in (4.213),

t =
1

r
ln

(
No −K
No

)
. (4.214)

Note that the time t given in (4.214) is negative since we are assuming that
No > K, so that No−K < No (recall that the carrying capacity, K, is positive)

and therefore
No −K
No

< 1. Thus, for the case in which No > K, the solution

to the initial value problem (4.201) does not exists for the negative value of t
given in (4.214); however, it does exits for

t >
1

r
ln

(
No −K
No

)
. (4.215)
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To see why this assertion is true, observe that if (4.215), then

ert >
No −K
No

,

from which we get that
No > (No −K)e−rt,

which implies that
No + (K −No)e−rt > 0;

that is, the denominator of the expression in (4.212) defining N(t) is positive
for t > ln[(No−K)/No]/r. Hence, N(t) is defined for all t > ln[(No−K)/No]/r.
Thus, we have shown that, for No > 0, the function defined by

N(t) =
NoK

No + (K −No)e−rt
(4.216)

is defined in some interval containing 0 and all t > 0. This function solves the
initial value problem in (4.201) and satisfies

lim
t→∞

N(t) = K,

since r > 0.
We next see that the function defined in (4.216) is the unique solution to

the initial value problem (4.201). Suppose to the contrary that there are two
distinct solutions, N1 and N2, of the initial value problem in (4.201). Since we
are assuming that No > 0, we may also assume that N1(t) > 0 and N2(t) > 0
for t in some open interval, I, which contains 0. Then the functions u1 and u2
defined by

u1(t) =
1

N1(t)
and u2(t) =

1

N2(t)
, for t ∈ I,

give rise to two distinct solutions to the initial value problem in (4.211). This
is impossible since we showed in Section 4.8.1 that that problem has a unique
solution. Hence, N1 and N2 cannot be distinct.

4.9.2 Partial Fractions

In this section we present another way to solve the Logistic equation. We start
out by separating variables∫

1

N(N −K)
dN = −

∫
r

K
dt. (4.217)

We evaluate the integral on the left–hand side of (4.217) by using an integration
technique known as partial fractions. The idea for this technique is to write the
integrand as a sum of fractions

1

N(N −K)
=
A

N
+

B

N −K
, (4.218)
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where the constants A and B need to be determined so that the equation in
(4.218) holds true. Assuming that we have found constants A and B so that
(4.218) is true, we can then evaluate the integral on the left–hand side of (4.217)
as follows: ∫

1

N(N −K)
dN = A ln |N |+B ln |N −K|+ c, (4.219)

for arbitrary constant c.
In order to find the constants A and B, first multiply both sides of the

equation in (4.218) by N(N −K) to get

1 = A(N −K) +BN,

or
0N + 1 = (A+B)N −AK. (4.220)

Note that the right–hand side of the equation in (4.220) is polynomial in N .
The constant, 1, in the left–hand side of (4.220) can also be thought of as a
polynomial in N when written as 0N+1. Two polynomials are equal if and only
if corresponding coefficients are equal. Hence, the equality in (4.220) implies
that {

A+B = 0
−AK = 1.

(4.221)

solving the second equation in (4.221) for A yields

A = − 1

K
. (4.222)

Substituting the value for A in (4.222) into the first equation in (4.221) and
solving for B yields

B =
1

K
. (4.223)

Having determined the values for A and B in (4.222) and (4.223), respectively,
we can evaluate the integral on the left–hand side of (4.217) by means of (4.219).
We therefore obtain from (4.219) that

− 1

K
ln |N |+ 1

K
ln |N −K| = − rt

K
+ c1, (4.224)

for some arbitrary constant c1. Multiplying the equation in (4.224) and simpli-
fying yields

ln

(
|N −K|
|N |

)
= −rt+ c2, (4.225)

for some arbitrary constant c2. Applying the exponential function on both sides
of (4.225) yields and simplifying yields

|N −K|
|N |

= c3e
−rt, (4.226)
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where we have set c3 = ec2 . Next, use the continuity of the exponential function
and of N , to conclude that

N −K
N

= c e−rt, (4.227)

for some constant c. Solving for N in (4.227) we obtain the general solution to
the Logistic differential equation:

N(t) =
K

1− c e−rt
. (4.228)

In order to compute a solution to the logistic equation satisfying the initial
condition N(0) = No, for No 6= 0, we first determine the value of c from (4.226)
to obtain

c =
No −K
No

. (4.229)

Substituting the value of c in (4.229) into (4.228) and simplifying yields

N(t) =
NoK

No + (K −No)e−rt
,

which is the same formula given in (4.216) for the solution to the initial value
for the Logistic equation in (4.201).

The procedure described so far yields existence; however, we can not con-
clude uniqueness from it. Nevertheless, the procedure applies to equations other
than the Logistic equation.

Example 4.9.1. Solve the initial value problem

dy

dt
= 1− y2, y(0) = 2. (4.230)

Solution: First, rewrite the differential equation in (4.230) as

dy

dt
= −(y2 − 1),

and the separate variables to get∫
1

y2 − 1
dy = −

∫
dt. (4.231)

In order to evaluate the integral on the left–hand side of (4.231), first we factor
the denominator in the integrand to get

1

y2 − 1
=

1

(y + 1)(y − 1)
. (4.232)

We decompose the right–hand side in (4.232) by means of partial fractions as

1

(y + 1)(y − 1)
=

A

y + 1
+

B

y − 1
, (4.233)
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where the constants A and B are to be determined. Once A and B are deter-
mined, the integral on the left–hand side of (4.231) can be evaluated by virtue
of (4.232) and (4.233) to obtain∫

1

y2 − 1
dy = A ln |y + 1|+B ln |y − 1|+ c, (4.234)

for arbitrary constant c.
In order to determine A and B, multiply on both sides of the equation in

(4.233) by (y + 1)(y − 1) to obtain

1 = A(y − 1) +B(y + 1),

or
0y + 1 = (A+B)y +B −A. (4.235)

Equating corresponding coefficients for the polynomials on the each side of
(4.235) yields the system {

A+B = 0
B −A = 1.

(4.236)

Solving the system in (4.236) yields

A = −1

2
and B =

1

2
. (4.237)

Substituting the values for A and B in (4.237) into (4.234) yields the left–hand
side of (4.231) so that, integrating both sides of (4.231),

−1

2
ln |y + 1|+ 1

2
ln |y − 1| = −t+ c1, (4.238)

for arbitrary constant c1. Next, multiply on both sides of (4.238) and simplify
to get

ln

(
|y − 1|
|y + 1|

)
= −2t+ c2, (4.239)

for arbitrary constant c2. Apply the exponential function on both sides of
(4.239) to obtain

|y − 1|
|y + 1|

= c3 e
−2t, (4.240)

where we have set c3 = ec2 . Using the continuity of y and the exponential
function we get from (4.240) that

y − 1

y + 1
= c e−2t, (4.241)

for arbitrary constant c. Solving for y in (4.240) yields the general solution,

y(t) =
1 + c e−2t

1− c e−2t
, (4.242)
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for the differential equation in (4.230). Using the initial condition in (4.230) in
(4.241), we get

c =
1

3
. (4.243)

Substituting the value of c in (4.243) into (4.242) yields a solution to the initial
value problem in (4.230) given by

y(t) =
3 + e−2t

3− e−2t
.

�

4.10 Testing the Logistic Model

In this section we fit bacterial growth data that we discussed presented in Section
4.7 to the Logistic model

dN

dt
= rN

(
1− N

K

)
. (4.244)

In this case we have two parameters, r and K, that we need to estimate. We
have shown that K is the limiting value of N(t) as t → ∞; so, in practice, it
might not be feasible to observe a population for a very long time until some kind
of approximation to the limiting value can be obtained. Since, all estimates are
based on finite time measurements, there is still no guarantee that the estimate
will be close to the actual limiting value. Thus, we need to find another way to
estimate the parameters based on a finite set of data like the one for bacterial
growth given in Table 4.3 on page 46 in these notes.

The idea is to rewrite the model in (4.244) it terms of the per–capita growth
rate

1

N

dN

dt
= r − r

K
N. (4.245)

The equation in (4.245) states that, in the Logistics model, there is a linear
relation between the per–capita growth rate and the population size. Thus, in
a scatter plot of per–capita growth rate versus N the data points should line up

along line with slope − r

K
and y–intercept r. Hence, a least–squares fit of the

data should provide estimates for r and K.
Since data in Table 4.3 on page 46 corresponds to a discrete set of points,

we need to make the differential equation in (4.245) into a discrete equation

1

N

∆N

∆t
= r − r

K
N, (4.246)

where

∆N = N(ti)−N(ti−1), for i = 1, 2, . . . ,m,
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for the times to, t1, t2, . . . , tm listed on the first column of Table 4.3; N(ti), for
i = 0, 1, 2, . . ., are the corresponding optical density values; and

∆t = ti − ti−1 = 0.5, for i = 1, 2, . . . ,m.

We can then rewrite the equation in (4.246) as

1

N(ti−1)

N(ti)−N(ti−1)

0.5
= r − r

K
N(ti), for i = 1, 2, . . . ,m. (4.247)

The relative growth rate values on the left–hand side of (4.247) can be computed
using a spreadsheet program (for instance, MS Excel), and plotted against the
discrete set of density values, N(ti). Table 4.6 show values of per–capita growth
rate and population density based on the Staphylococcus aureus growth data in
Table 4.3. We discarded the data point corresponding to optical density of 0.039

Concentration per–capita
(OD650) Growth Rate

0.069 1.538
0.110 1.188
0.170 1.091
0.229 0.694
0.261 0.279
0.288 0.207
0.309 0.146
0.327 0.117
0.347 0.122

Table 4.6: Staphylococcus aureus Relative Growth Data

since it did fit into the linear pattern of the rest of the points shown in Figure
4.10.18. Keep in mind that our goal is to estimate the parameters r and K in
equation (4.244) in order to obtain a formula for N(t) given by the solution to
the equation (4.244) subject to the initial condition N(0) = No; namely,

N(t) =
NoK

No + (K −No)e−rt
, (4.248)

Figure 4.10.18 also show the least–squares linear fit for the data in Table 4.6)
the corresponding equation of the line is

y = 1.878− 5.459x.

Thus,
r =̇ 1.878 (4.249)

and
r

K
=̇ 5.459. (4.250)
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Figure 4.10.18: Staphylococcus aureus Linear Fit for the data in Table 4.6

Combining (4.249) and (4.250) yields the following estimate for the carrying
capacity:

K =̇ 0.344. (4.251)

The estimate for the carrying capacity in (4.251) is barely lower than the highest
density value in Table 4.3, which is 0.347; thus, it is not a good estimate for the
carrying capacity. In order to get a better estimate for K, consider Table 4.7,
whose second column lists the average growth rates, not the per–capita growth
rates, computed from the values in Table 4.3. Next, recall from the qualitative
analysis of the Logistic equation in Section 3.1 that the highest rate of change
for N occurs at the inflection point on the graph of the logistic curve; namely,
when N = K/2, half of the carrying capacity. This observation allows us to
obtain a better estimate for K by setting

K

2
=̇

0.170 + 0.229

2
, (4.252)

the average of the two values of the optical density at which the top two values
of the rate of change occur. We than obtain from (4.252) the estimate

K =̇ 0.399. (4.253)

Adopting the estimate for K in (4.253), we now proceed to estimate the remain-
ing parameters, No and r, in the formula for N(t) in (4.248). In order to do
this, we first rewrite the equation (4.248) in the form

K −N
N

=
K −No
No

e−rt. (4.254)
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Concentration Average
(OD650) Growth Rate

0.032
0.039 0.014
0.069 0.060
0.110 0.082
0.170 0.120
0.229 0.118
0.261 0.064
0.288 0.054
0.309 0.042
0.327 0.036
0.347 0.040

Table 4.7: Staphylococcus aureus Rate of Growth Data

Next, take the natural logarithm on both sides of the equation in (4.254) to
obtain

ln

(
K −N
N

)
= ln

(
K −No
No

)
− rt. (4.255)

Thus, according to (4.255), plotting the values of ln[(K −N)/N ] versus t, from
the Table 4.3, should yield points that line up along a straight line of slope −r
and y–intercept ln[(K −No)/No]. Using the estimate for K in (4.253) we may
use the values for the slope and y–intercept of the least–squares linear fit to the
data in order to estimate r and No. Table 4.8 was obtained from the values in

Time ln[(K −N)/N ]
(hours)

0.0 2.440
0.5 2.223
1.0 1.565
1.5 0.966
2.0 0.298
2.5 −0.298
3.0 −0.637
3.5 −0.953
4.0 −1.234
4.5 −1.513
5.0 −1.898

Table 4.8: Staphylococcus aureus Growth Data for Logistic Fit

Table 4.3 on page 46. Figure 4.10.19 shows a plot of the data in Table 4.8 along
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Figure 4.10.19: Staphylococcus aureus Linear Fit for the data in Table 4.8

with the least–squares linear fit, whose equation is

y = 2.3507− 0.9055t. (4.256)

Comparing equation (4.255) and (4.256), we obtain the estimates

r =̇ 0.906, (4.257)

and

ln

(
K −No
No

)
=̇ 2.351. (4.258)

Combining (4.258) with (4.253) we get the following estimate for No:

No =̇ 0.035. (4.259)

Using the estimated values for the parameters No, r and K in (4.259), (4.257)
and (4.253), respectively, we obtain the following predicted values for the optical
density based on the data in Table 4.3:

P (t) =
0.014

0.035 + 0.364e−0.906t
, for t ∈ R. (4.260)

Table shows the data from Table 4.3 along with the concentration values pre-
dicted with the formula in (4.260). Figure 4.10.20 shows a plot of the data in
Table 4.3 along with the logistic model in (4.260) that we just fit to the data.
We see that the Logistic model fits the data better then the Malthusian model
demonstrated by comparison of the plots in Figures 4.7.14 and 4.10.20.
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Time Concentration Predicted
(hours) (OD650) Concentrations

0.0 0.032 0.035
0.5 0.039 0.053
1.0 0.069 0.077
1.5 0.110 0.109
2.0 0.170 0.148
2.5 0.229 0.192
3.0 0.261 0.237
3.5 0.288 0.278
4.0 0.309 0.313
4.5 0.327 0.340
5.0 0.347 0.360

Table 4.9: Staphylococcus aureus Growth Data and Predicted Values
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Figure 4.10.20: Staphylococcus aureus Logistic Fit for data in Table 4.3



Chapter 5

Applications of Differential
Calculus: Part II

In the previous chapter we saw how separation of variables and a few integra-
tion techniques can be used to solve some differential equations that come up in
modeling certain biological and physical phenomena. The models that we have
analyzed so far were based on simplifying assumptions that made their math-
ematical analysis more tractable. In a lot of situations, though, simplifying
assumptions cannot be made and the resulting models are consequently more
complex and more difficult to analyze. In most situations, computing a formula
for the solution to an initial value problem is neither feasible nor desirable; so,
we need to resort to qualitative techniques. In Sections 3.1 and 4.8.2, we in-
troduced a few of the ideas from qualitative analysis in context of the Logistic
equation and linear first order equations with constant coefficients, respectively.
In this chapter, we extend the ideas presented in those sections to more general
models of the form

dN

dt
= f(N), (5.1)

where f : I → R is a differentiable real valued function defined on some open
interval, I, of real numbers. An example of an equation of the type in (5.1) is
the following model for bacterial growth postulated by Monod in the 1930s and
1940s:

dN

dt
= rN

[
Co −N

γa+ Co +N

]
, (5.2)

for some parameters r, Co, γ and a. It is tempting to use separation of vari-
ables to solve the equation in (5.2). Perhaps the partial fractions might help
to evaluate the integral involving N . It might even be possible to solve for
N as a function of t, given some initial condition, N(0) = No. However, as
demonstrated in Section 3.1 for the Logistic equation. qualitative information
obtained without solving the equation might be sufficient to obtain a very good
idea of what the model is predicting. We will demonstrate that in this chapter
for the case of the equation in (5.2) and the general equation (5.1).

75
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In Section 4.8.2 we introduced the concept of an equilibrium solution. We
say that N is an equilibrium solution of (5.1) if N is a solution to the equation

f(N) = 0;

For example, the equation in (5.2) has two equilibrium solutions:

N1 = 0 and N2 = Co.

As in the analysis presented for linear coefficients, we would like to learn whether
an equilibrium solution is stable or not. We saw in Section 4.8.2 that the stability

of the equilibrium point y =
b

a
for the linear equation

dy

dt
= ay + b,

for a 6= 0, is determined by the sign of a. In this chapter we will learn that the
stability of an equilibrium point, y, for the first order differential equation

dy

dt
= f(y),

for the case in which f ′(y) 6= 0 is determined by the sign of f ′(y). To obtain
this result, we will use the linear approximation to the the function f around y
provided by the first derivative:

f(y) = f(y) + f ′(y)(y − y) + E(y, y),

where E(y, y) measures the error in approximating f around y by the linear
approximation

L(y) = f(y) + f ′(y)(y − y).

5.1 Linear Approximations

Let f : I → R be a differentiable function over an open interval containing a.

Definition 5.1.1 (Linear Approximation). The function given by

L(x; a) = f(a) + f ′(a)(x− a), for all x ∈ R, (5.3)

is called the linear approximation for f around a. Note that

y = L(x; a)

gives the equation of the tangent line to the graph of y = f(x) at the point
(a, f(a)). For this reason, the expression in (5.3) is also known as the tangent
line approximation around a of the function f ; in some texts, L(x; a) is also
referred to as the local linearization of f at a.
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Example 5.1.2. Let f : (0,∞)→ R be given by

f(x) = lnx, for all x > 0.

Give the linear approximation to f near a = 1.
Solution: Compute

L(x; 1) = f(1) + f ′(1)(x− 1), for all x ∈ R,

where f ′(x) =
1

x
for x > 0, so that f ′(1) = and

L(x; 1) = x− 1, for x ∈ R.

Figure 5.1.1 shows the graph of y = f(x) and the linear approximation to f
around a = 1. �

x
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y = lnx
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y = x− 1

Figure 5.1.1: Sketch of graph of y = ln(x) and Linear Approximation at a = 1

Definition 5.1.3 (Error Term in Linear Approximation). Let f : I → R be a
differentiable function over an open interval containing a, and denote by L(x; a)
its linear approximation. Define

E(a;x) = f(x)− L(x; a), for x ∈ I. (5.4)

We then have that

f(x) = f(a) + f ′(a)(x− a) + E(a;x), for x ∈ I, (5.5)

where

lim
x→a

E(a;x)

x− a
= 0. (5.6)
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Remark 5.1.4. The expression in (5.6) follows from (5.4), (5.5), and the defi-
nition of the derivative of f at a; namely,

f ′(a) = lim
x→a

f(x)− f(a)

x− a
. (5.7)

In fact, rewriting (5.5) we have that, for x 6= a,

E(a;x)

x− a
=
f(x)− f(a)

x− a
− f ′(a); (5.8)

thus, taking the limit as x→ a on both sides of (5.8) and using (5.7), we obtain
that

lim
x→a

E(a;x)

x− a
= lim
x→a

f(x)− f(a)

x− a
− f ′(a) = f ′(a)− f ′(a) = 0,

which is (5.6).

Next, we derive a formula for computing E(a;x) in (5.4) which will allow us
to obtain useful estimates.

Proposition 5.1.5 (Estimating the Error). Assume that f is a twice differen-
tiable function defined on an interval, I, that contains a. Then, the error term
in (5.4) is given by

E(a;x) =

∫ x

a

f ′′(t)(x− t) dt, for x ∈ I. (5.9)

Hence, if |f ′′(x)| ≤M for all x ∈ I and some constant M , then

|E(x; a)| ≤ M

2
|x− a|2, for x ∈ I. (5.10)

Proof: Use integration by parts to evaluate the integral on the right–hand side
of (5.9) by setting

u = x− t and dv = f ′′(t) dt
then, du = − dt and v = f ′(t),

so that ∫ x

a

f ′′(t)(x− t) dt = f ′(t)(x− t)
∣∣∣x
a

+

∫ x

a

f ′(t) dt (5.11)

from which we get that∫ x

a

f ′′(t)(x− t) dt = −f ′(a)(x− a) + f(x)− f(a), (5.12)

where we have used the Fundamental Theorem of Calculus in evaluation the
right–most integral in (5.11). The equation in (5.12) can be rewritten as∫ x

a

f ′′(t)(x− t) dt = f(x)− L(x; a), (5.13)
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by the definition of L(x; a) in (5.3). Comparing the equations in (5.4) and (??)
yields (5.9).

To complete the proof of Proposition 5.1.5, assume that

|f ′′(x)| ≤M, for all x ∈ I, (5.14)

and some constant M . Take absolute values on both sides of (5.9) to obtain the
estimate

|E(a;x)| 6
∫ x

a

|f ′′(t)||x− t| dt, for x ∈ I with x > a. (5.15)

Next, use the estimate for |f ′′(t)| in (5.14) in the integral in (5.15) and integrate
to obtain from (5.15) that

|E(a;x)| 6 M

2
|x− a|2, for x ∈ I with x > a. (5.16)

Similar calculations show that

|E(a;x)| 6 M

2
|x− a|2, for x ∈ I with x < a. (5.17)

Combining (5.16) and (5.19) gives the estimate in (5.10). �

Example 5.1.6. Estimate the cosine of 1.
Solution: Here, 1 represents the measure of an angle in radians. Observe that

π

3
≈ 1.0472;

Thus, we can estimate cos(1) by using the linear approximation to f(x) = cosx
at a = π/3; namely,

L(π/3) = f(π/3) + f ′(π/3)
(
x− π

3

)
, for x ∈ R,

where
f ′(x) = − sinx, for x ∈ R.

Thus,

L(x;π/3) = cos(π/3)− sin(π/3)
(
x− π

3

)
, for x ∈ R,

or

L(x;π/3) =
1

2
−
√

3

2

(
x− π

3

)
, for x ∈ R. (5.18)

Thus, using the linear approximation to cosx at a = π/3 in (5.19), we get that

cos(1) ≈ L(1;π/3) =
1

2
−
√

3

2
(1− 1.0472),

so that
cos(1) ≈ 0.540876. (5.19)
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Using the estimate for the error in the approximation in (5.10), with M = 1
since | cos′′(t)| = |cost| 6 1 for all t ∈ R, we see that

|E(1;π/3)| 6 1

2
|1− 1.0472|2 =̇ 0.001.

Thus, the estimate in (5.19) is accurate to two decimal places, so that

cos(1) =̇ 0.54.

�

5.2 The Principle of Linearized Stability

Let f : I → R be a differentiable function with continuous derivative defined
on some interval I. In this section we present a qualitative analysis of the
differential equation

dy

dt
= f(y) (5.20)

based on linear approximations of f around its equilibrium points. We will be
dealing only with isolated equilibrium points.

Definition 5.2.1 (Isolated Equilibrium Point). A point y ∈ I is said to be an
equilibrium point of the differential equation in (5.20) if y solves the equation

f(y) = 0. (5.21)

If y is the only solution to (5.21) in some open interval containing y, then y is
said to be isolated.

Example 5.2.2. The points y1 = 0 and y2 = 1 are isolated equilibrium points
of the differential equation

dy

dt
= y − y2 (5.22)

To see why this assertion is true, observe that the interval (−1/2, 1/2) contains
only one equilibrium point, y1 = 0, while the interval (1/2, 3/2) contains only
one equilibrium point, y2 = 1.

Let y denote an isolated equilibrium point of the equation in (5.20) and
yo 6= y represent any point in an open interval around y which contains no
equilibrium points other than y. We consider the initial value problem

dy

dt
= f(y);

y(0) = yo.
(5.23)

We are interested in the behavior of solution, y = y(t), to the initial value
problem as time increases. Two things can happen: (i) either y(t) will tend
towards y, or (ii) y(t) will tend away from y. In the first case we say that the
equilibrium solution, y, is stable, while is case (ii) we say that y unstable. We
will make these notions more precise in the following definitions.
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Definition 5.2.3 (Stability). Let y be an isolated equilibrium point of the
equation (5.20). The equilibrium solution y(t) = y, for all t ∈ R, is said to be
stable if and only if

(i) There exists an interval J contained in I such that, if yo ∈ J , then the
initial value problem (5.23) has a solution y = y(t) that exists for all t > 0,
and

(ii) the solution y(t) obtained in part (i) tends towards y as t increases.

Definition 5.2.4 (Asymptotic Stability). Let y be an isolated equilibrium point
of the equation (5.20). The equilibrium solution y(t) = y for all t ∈ R is said to
be asymptotically stable if and only if it is stable and, in addition to (i) and
(ii) in Definition 5.2.3, the solution y(t) obtained in part (i) of Definition 5.2.3
satisfies

lim
t→∞

y(t) = y.

Definition 5.2.5 (Unstable equilibrium point). Let y be an isolated equilibrium
point of the equation (5.20). The equilibrium solution y(t) = y for all t ∈ R is
said to be unstable if and only if it is not stable.

Example 5.2.6. The initial value problem
dy

dt
= y − y2;

y(0) = yo,
(5.24)

has the solution
y(t) =

yo
yo + (1− yo)e−t

, (5.25)

which can be obtained by separating variables and using partial fractions to
evaluate the integral involving y. Observe that for yo > 0, the function y given
by (5.25) is defined for all values of t > 0. To see why this is the case, note that,
if 0 < yo 6 1, then

yo + (1− yo)e−t > yo > 0, for all t ∈ R.

Thus, the denominator of the expression defining y(t) in (5.25) is nonzero for all
t ∈ R, and therefore y(t) is defined for all t ∈ R. For the case in which yo > 1,
we have that

yo − 1 > 0,

so that
(yo − 1)e−t 6 yo − 1, for t > 0, (5.26)

since e−t 6 1 for t > 0. Multiplying on both sides of the inequality in (5.26) by
−1 then yields

(1− yo)e−t > 1− yo, for t > 0,

so that
yo + (1− yo)e−t > 1 > 0, for t > 0,
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and therefore the denominator of the expression defining y(t) in (5.25) is nonzero
for t > 0, and therefore y(t) is defined for t > 0.

It follows from the definition of y(t) in (5.25) that, for yo > 0,

lim
t→∞

y(t) = 1.

Thus, y2 = 1 is an asymptotically stable equilibrium point of the equation (5.22)
in Example 5.2.2, according to Definition 5.2.4.

We next consider equilibrium point y1 = 0. Differentiating with respect to
t the expression for y(t) in (5.25), we obtain

y′(t) =
yo(1− yo)e−t

(yo + (1− yo)e−t)2
. (5.27)

Thus, for any yo > 0 close to 0, y′(t) > 0 so that y(t) increases from yo as t
increases, and so y(t) tends away from y1 = 0. Thus, it follows from Definition
5.2.5 that y1 = 0 is unstable.

In Example 5.2.6 we we able to write down a formula for computing a so-
lution to the differential equation subject to the initial condition. The formula
allowed us to verify the conditions in the definition of asymptotic stability for
the equilibrium point y2 = 1. We also used the formula for y(t) and its deriva-
tive to show that y1 = 0 is unstable. In the general case of equation (5.20)
we might not be able to obtain a formula for the solution to the initial value
problem (5.23). Thus, if all we know for sure about f is that it is differentiable
and has continuous derivative on some interval of real values, we need to resort
to the general theory of ordinary differential equations in order to answer any
question regarding stability of equilibrium points. We state here a few of the
results that may be found in several texts in differential equations; for example,
see [BC87].

Theorem 5.2.7 (Local Existence and Uniqueness). Suppose that f and f ′ are
continuous in an interval which contains yo, then the initial value problem

dy

dt
= f(y);

y(to) = yo,
(5.28)

has one, and only one, solution defined in some interval around to.

The reason Theorem 5.2.7 is called the Local Existence and Uniqueness The-
orem is that a unique solution to the initial value problem (5.28) is guaranteed
to exist in some interval around to. Further developments of the theory of ordi-
nary differential equations show that the solution exist in some maximal interval
containing to.
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Example 5.2.8. Solve the initial value problem
dy

dt
= y2;

y(0) = yo,
(5.29)

for yo > 0.
Solution: Separating variables we obtain that∫

1

y2
dy =

∫
dt,

which integrates to

−1

y
= t+ c1, (5.30)

for arbitrary constant c1. Multiplying both sides of the equation in (5.30) by
−1 and setting c = −c1, we obtain from (5.30) that

1

y
= c− t. (5.31)

Solving for y in (5.31) yields the general solution

y(t) =
1

c− t
. (5.32)

Next, use the initial condition y(0) = yo to obtain from (5.32) that

1

c
= yo,

from which we get that c = 1/yo, so that

y(t) =
1

1/yo − t
,

or
y(t) =

yo
1− yot

. (5.33)

Note that the function given in (5.33) is differentiable for t < 1/yo. Thus,
the maximal interval of existence for the initial value problem in (5.29) is
(−∞, 1/yo). �

Remark 5.2.9. The result of Example 5.2.8 shows that the equilibrium point,
y = 0 for the differential equation

dy

dt
= y2

is unstable since condition (i) in Definition 5.2.3 is not satisfied; in other words,
the solution y(t) to the initial value problem in (5.29) does not exist for all t > 0.
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In some situations we are able to tell, without solving the equation, whether
a solutions exists for all time t (or at least for t > 0). Here is an example of a
result that yields existence for all time, t, and which may be found in [BC87].

Theorem 5.2.10 (Global existence and long–term behavior). Suppose that
f and f ′ are continuous in some interval. Let y1 and y2 be two consecutive,
isolated equilibrium points of the differential equation in (5.20) with y1 < y2.
Then, for any yo such that y1 < yo < y2, the solution, y(t), to the initial value
problem in (5.23) exists for all t ≥ 0. Furthermore, lim

t→∞
y(t) exists and it equals

to one of y1 or y2, depending on the stability properties of y1 and y2. Likewise,
y(t) exists for all t ≤ 0 and it approaches an equilibrium solution as t→ −∞.

Example 5.2.11. The differential equation

dy

dt
= y − y2

has equilibrium points y1 = 0 and y2 = 1; so that y1 < y2, as required by
Theorem 5.2.10. It then follows from the theorem that, for any yo with 0 <
yo < 1, the initial value problem

dy

dt
= y − y2;

y(0) = yo,
(5.34)

has a solutions that exists for all values of t ∈ R. This was demonstrated in
Example 5.2.6. We also so in Example 5.2.6 that, for yo > 0, the solution,
y = y(t), for the initial value problem 5.34 satisfies

lim
t→∞

y(t) = 1.

It can also be verified that, for 0 < yo < 1, the solution, y = y(t), for the initial
value problem 5.34 satisfies

lim
t→−∞

y(t) = 0.

The final result from the theory of ordinary differential equations that we
will quote in this section will allow us to tell whether y is a stable or unstable
equilibrium point of the equation in (5.20) by looking at the sign of f ′(y) for the
case in which f ′(y) 6= 0. It is called the principle of linearized stability. When
it is applicable, it is a very powerful result.

We begin by defining the linearization of the differential equation (5.20)
around an isolated equilibrium point, y.

Let y = y(t) denote a solution to the differential equation in (5.20) and put

u = y − y. (5.35)

Differentiating with respect to t on both sides of (5.35) yields

du

dt
=
dy

dt
= f(y), (5.36)
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where we have used the assumption that y solves the differential equation in
(5.20). Next, use the linear approximation to f at y to rewrite (5.36) as

du

dt
= f(y) + f ′(y)(y − y) + E(y, y), (5.37)

where E(y, y) is the error in the linear approximation. We now use the assump-
tion that y is an equilibrium point and the definition of u in (5.35) to get from
(5.37) that

du

dt
= f ′(y)u+ E(y, y). (5.38)

When y is very close to y, we obtain from (5.38) that the equation in (5.20) can
be approximated by the equation linear differential equation

du

dt
= f ′(y)u. (5.39)

The equation in (5.39) is called the linearization of the equation in (5.20).
Observe that, for f ′(y) 6= 0, the linear equation in (5.39) has one equilibrium

point, namely u = 0. Observe also that the linearized equation (5.39) can be
solved to yield

u(t) = uoe
f ′(y)t, for all t ∈ R, (5.40)

where uo = u(0). Thus, if f ′(y) < 0, we get form (5.40) that

lim
t→∞

u(t) = 0;

so that, if f ′(y) < 0, then u = 0 is an asymptotically stable equilibrium point
for the linearized equation (5.39). On the other hand, if f ′(y) > 0, then, for any
uo 6= 0, we see from (5.40) that u(t) tends away from 0 as t increases. Hence,
if f ′(y) > 0, then u = 0 is unstable. The principle of linearized stability states
that, if f ′(y) 6= 0, then the isolated equilibrium y of the equation in (5.20)
inherits the same kind of stability property as u = 0 for the linearized equation
(5.39). In other words, if f ′(y) < 0, then y is an asymptotically stable; and, if
f ′(y) > 0, then y is unstable.

Theorem 5.2.12 (Principle of linearized stability). Suppose that f and f ′

are continuous in some open interval containing an isolated equilibrium point,
y, of the differential equation (5.20). If u = 0 is asymptotically stable for the
linearized equation (5.39), then y is also asymptotically stable for the non–linear
equation (5.20); if u = 0 is unstable for (5.39), then it is also unstable for (5.20).
In other words, if f ′(y) < 0, then y is asymptotically stable, and if f ′(y) > 0,
then y is unstable.

Example 5.2.13. For the equation in Example 5.2.6, f(y) = y − y2, so that
f ′(y) = 1− 2y. We then have that

f ′(0) = 1 > 0,
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so that y1 = 0 is unstable, by the principle of linearized stability. On the other
hand, since

f ′(1) = −1 < 0,

and therefore y2 = 1 is asymptotically stable, by the principle of linearized
stability. Both of these statements were shown to be true in Example 5.2.6 by
verifying the conditions in Definitions 5.2.3, 5.2.4 and 5.2.5.

Example 5.2.14. Consider the Monod model for bacterial growth in (5.2);
namely,

dN

dt
= rN

[
Co −N

γa+ Co +N

]
, (5.41)

for positive parameters r, Co, γ and a.

Solution: Set f(N) = rN

[
Co −N

γa+ Co +N

]
. Then, N1 = 0 and N2 = Co are

equilibrium points of the equation in (5.41). In order to determine the nature
of the stability of N1 and N2, we apply the principle of linearized stability,
Theorem 5.2.12. Thus, compute

f ′(N) = r
(γa+ Co +N)(Co − 2N)−N(Co −N)

(γa+ Co +N)2
, for N > 0. (5.42)

It follows from (5.42) that

f ′(0) =
rCo

γa+ Co
> 0,

so that N1 = 0 is unstable, by the principle of linearized stability. Similarly, we
compute using (5.42) that

f ′(Co) = − rCo
γa+ 2Co

< 0,

which shows that N2 = Co is asymptotically stable, by the principle of linearized
stability. �

Remark 5.2.15. The results in Example 5.2.14 in conjunction with global
existence and long–term behavior theorem (Theorem 5.2.10), allow us to infer
from the Monod model for bacterial growth in (5.41) that, for initial population
densities, N(0) = No, such that 0 < No < Co, the population density will tend
to the limiting value of N2 = Co as t→∞.

Remark 5.2.16. Examples 5.2.13 and 5.2.14 illustrate the fact that the prin-
ciple of linearized stability, when applicable, is indeed very powerful since its
application gives as a very good picture of the long–term behavior of solutions
to a differential equation without having to solve the differential equation. How-
ever, the principle is not always applicable. For instance, consider the differential
equation

dy

dt
= y2. (5.43)
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In this case f(y) = y2 and y = 0 is the only equilibrium point. However.
f ′(y) = 2y, so that f ′(0) = 0 and, therefore, the principle of linearized stability
does not apply. Thus, in order to determine the stability properties of y = 0,
other means of analysis have to be employed. In Examples 5.2.8 and 5.2.9, we
showed that y = 0 is an unstable equilibrium solution of the equation (5.43).
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