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Solutions to Assignment #11

1. Use the fact that
√

2 = sup{q ∈ ℚ ∣ q > 0 and q2 < 2} to prove that there
exists a sequence of rational numbers, (qn), such that

lim
n→∞

qn =
√

2.

Proof: Write A = {q ∈ ℚ ∣ q > 0 and q2 < 2}. Then,
√

2 = sup(A). Thus, for
each n ∈ ℕ there exists qn ∈ A such that

√
2− 1

n
< qn <

√
2.

Since lim
n→∞

1

n
= 0, it follows by the Squeeze Theorem for sequences that the

limit of (qn) exists and
lim
n→∞

qn =
√

2.

2. Let ("n) denote a sequence of positive numbers which converges to 0. Let (xn)
be a sequence of real numbers and x ∈ ℝ. Assume there exists N1 ∈ ℕ such
that

∣xn − x∣ ⩽ "n for all n ⩾ N1.

Prove that (xn) converges to x.

Proof: Assume there exists N1 ∈ ℕ such that

∣xn − x∣ ⩽ "n for all n ⩾ N1, (1)

where "n > 0 for all n and lim
n→∞

"n = 0.

Let " > 0 be given. Then, there exists N2 ∈ ℕ such that

n ⩾ N2 ⇒ "n < ".

It then follows form (1) that, for N = max{N1, N2},

n ⩾ N ⇒ ∣xn − x∣ < ",

which shows that (xn) converges to x.
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3. Let xn =
1

n!
for n ∈ ℕ. Prove that the sequence (xn) converges to 0.

Proof: First we prove by induction on n that n! ⩾ n for all n ∈ ℕ. Note that
1! = 1 and so the result is true for the base step in the induction. Next, assume
that n! ⩾ n and consider

(n + 1)! = (n + 1)n! = n ⋅ n! + n!.

By the inductive hypothesis,

(n + 1)! ⩾ n ⋅ n + n ⩾ n + 1.

We then have that

0 <
1

n!
⩽

1

n
for all n ∈ ℕ.

It then follows by the Squeeze Theorem, or by the result in the previous problem
that

lim
n→∞

1

n!
= 0.

4. Let (xn) be a sequence of real numbers converging to a ∕= 0. Prove that there
exists N ∈ ℕ such that

n ⩾ N ⇒ ∣xn∣ >
∣a∣
2
.

Proof. Assume that lim
n→∞

xn = a, where a ∕= 0. Put " =
∣a∣
2
. Then, " > 0 and

so, by the definition of convergence, there exists N ∈ ℕ such that

n ⩾ N ⇒ ∣xn − a∣ < " =
∣a∣
2
.

Now, by the triangle inequality

∣a∣ = ∣a− xn + xn∣ ⩽ ∣xn − a∣+ ∣xn∣, for n ⩾ N,

from which we get that

∣a∣ < ∣a∣
2

+ ∣xn∣, for n ⩾ N.

The result then follows by adding −∣a∣
2

on both sides of the previous inequality.
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5. Let (xn) be a sequence of non–zero, real numbers converging to a ∕= 0. Prove

that the set A =

{
1

xn

∣∣∣ n ∈ ℕ
}

is bounded.

Proof: Let xn ∕= 0 for all n ∈ ℕ and assume that

lim
n→∞

xn = a, where a ∕= 0.

Then, by the result in the previous problem, there exists N ∈ ℕ such that

∣xn∣ >
∣a∣
2

for all n ⩾ N.

We then have that
1

∣xn∣
<

2

∣a∣
for all n ⩾ N.

Setting M = max

{
1

∣x1∣
,

1

∣x2∣
, . . .

1

∣xN−1∣
,

2

∣a∣

}
, we see that

1

∣xn∣
⩽ M for all n ∈ ℕ;

that is, the set A =

{
1

xn

∣∣∣ n ∈ ℕ
}

is bounded.


