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Solutions to Exam 1 (Part II)

1. Let A be a non—empty subset of R. Prove that if u is an upper bound for A
and v € A, then u = sup A.

Proof: Assume that A is nonempty and that v is an upper bound for A. Then,
by the completeness axiom, sup(A) exists and

sup(A) < u. (1)
On the other hand, since is an element of A, it follows that

u < sup(A). (2)
Combining (1) and (2) yields the equality

u = sup A,

which was to be shown. O

2. In each of the following, show that the given set A is bounded, and compute
sup(A) and inf(A).

(a) A={r € R |0 <z < 1}; in other words, A is the open interval (0, 1).

Solution: Observe that 0 is a lower bound of A and 1 is an upper bound.
Since A is not empty, it follows from the completeness axiom that sup(A)
exists and

sup(A) < 1. (3)

Similarly, by a consequence of the completeness axiom proved in class,
inf(A) exists and
inf(A) > 0. (4)

We claim that
sup(4) = 1. (5)

Arguing by contradiction, if (5) does not hold true, then, in view of (3),
sup(A4) < 1. (6)
Then, adding 1 to both sides of (6),

sup(A) +1 < 2. (7)
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Dividing both sides of (7) by 2 then yields

w <1 8)
On the other hand,
sup(A4) +1 > inf(A) +1 > 1, (9)

where we have used (4). Dividing the inequality in (9) by 2 we obtain

A)+1 _ 1
%>§>07 (10)

1
where we have used the fact that 5> 0. It follows from (8) and (10) that
the number

sup(A) + 1

T=—— (11)

is an element of A. However, using the assumption in (6), we obtain from
the definition of z in (11) that

_ sup(A) + sup(4)
2

Note that (12) is in direct contradiction with the fact that x € A. This
contradiction establishes that the claim in (5) is true.

= sup(A). (12)

Next, we show that

inf(A) = 0. (13)
Arguing again by contradiction, if (13) is not true, then, by virtue of (4),

inf(A) > 0. (14)
Put _

y = 1nf2(A). (15)
Then, since 0 < % <1,

y < inf(A) (16)
and

0<y<l, (17)

where we have used (14), the definition of y in (15), and the fact that
inf(A) < sup(A) = 1, by (5). It follows from (17) that y € A; however,
this is in direct contradiction with (16). We therefore deduce that (13) is
true. U
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(b)

A:{ i nGN}.
n+1

Solution: First, observe that, for all n € N, n < n + 1; so that,

n
n+1

<1, forallnéeN.

Thus, 1 an upper bound for A; and so A is bounded above. Since, A is
also nonempty, it follows from the Completeness Axiom that sup(A) exists

and
sup(4) < 1. (18)

We claim that
sup(A4) = 1. (19)

In order to establish (19), argue by contradiction. Thus, in view of (18),
we assume that

sup(A4) < 1; (20)
so that
L > 1
sup(A4) ~
and 1

It follows from (21) and the Archimedean Property that there exists a
natural number m such that

1 1

— — 1. 22
m sup(A) (22)
Rearranging the terms in (22) leads to
m
A) < : 23
sup(4) < " 23

However, (23) is in contradiction with fact tat
established.

i T € A. Hence, (19) is

1
Next, observe that — < 1 for all n € N; thus,
n

1
1+

— <2, forallneN,
n
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from which we get that

4

(24)

(25)

1 1
1 25, for all n € N,
1+~
n
or )
n
> — .
17 for alln € N
1
It follows from (24) that 3 is a lower bound for A. Consequently, inf(A)
exists and 1
inf(A) > =.
inf(A) 5
. 1 .
Since 3 € A, it follows that
inf(A) < -
in <=
2

Combining (25) and (26) yields that

inf(A) = %

(26)

3. Let B C R be a non—empty subset which is bounded from below and put

¢ = inf B. Prove that for every n € N there exists x,, € B such that

1
C<xy, < b4+ —.
n

Proof: Assume that B C R is nonempty and bounded below. Then, inf(B)

1
exists. Given any n € N, — > 0, since n > 1 > 0 for all n € N. It then follows
n

that 1
inf(B) < inf(B) + —.
n

Thus, there exists x,, € B such that

1
inf(B) < x, <inf(B) + —.
n
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1 1
Otherwise, all the elements of B would be above inf(B) + —, and inf(B) + —
n n

would be a lower bound for B greater than the greatest lower bound. Hence,
putting ¢ = inf B, we have that for any n € N there exists z,, € B such that

1
{<x, <l+—.
n



