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Solutions to Exam 1 (Part II)

1. Let A be a non–empty subset of ℝ. Prove that if u is an upper bound for A
and u ∈ A, then u = supA.

Proof: Assume that A is nonempty and that u is an upper bound for A. Then,
by the completeness axiom, sup(A) exists and

sup(A) ⩽ u. (1)

On the other hand, since is an element of A, it follows that

u ⩽ sup(A). (2)

Combining (1) and (2) yields the equality

u = supA,

which was to be shown.

2. In each of the following, show that the given set A is bounded, and compute
sup(A) and inf(A).

(a) A = {x ∈ ℝ ∣ 0 < x < 1}; in other words, A is the open interval (0, 1).

Solution: Observe that 0 is a lower bound of A and 1 is an upper bound.
Since A is not empty, it follows from the completeness axiom that sup(A)
exists and

sup(A) ⩽ 1. (3)

Similarly, by a consequence of the completeness axiom proved in class,
inf(A) exists and

inf(A) ⩾ 0. (4)

We claim that
sup(A) = 1. (5)

Arguing by contradiction, if (5) does not hold true, then, in view of (3),

sup(A) < 1. (6)

Then, adding 1 to both sides of (6),

sup(A) + 1 < 2. (7)
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Dividing both sides of (7) by 2 then yields

sup(A) + 1

2
< 1. (8)

On the other hand,

sup(A) + 1 ⩾ inf(A) + 1 ⩾ 1, (9)

where we have used (4). Dividing the inequality in (9) by 2 we obtain

sup(A) + 1

2
⩾

1

2
> 0, (10)

where we have used the fact that
1

2
> 0. It follows from (8) and (10) that

the number

x =
sup(A) + 1

2
(11)

is an element of A. However, using the assumption in (6), we obtain from
the definition of x in (11) that

x >
sup(A) + sup(A)

2
= sup(A). (12)

Note that (12) is in direct contradiction with the fact that x ∈ A. This
contradiction establishes that the claim in (5) is true.

Next, we show that
inf(A) = 0. (13)

Arguing again by contradiction, if (13) is not true, then, by virtue of (4),

inf(A) > 0. (14)

Put

y =
inf(A)

2
. (15)

Then, since 0 <
1

2
< 1,

y < inf(A) (16)

and
0 < y < 1, (17)

where we have used (14), the definition of y in (15), and the fact that
inf(A) ⩽ sup(A) = 1, by (5). It follows from (17) that y ∈ A; however,
this is in direct contradiction with (16). We therefore deduce that (13) is
true. □
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(b) A =

{
n

n + 1

∣∣∣ n ∈ ℕ
}
.

Solution: First, observe that, for all n ∈ ℕ, n < n + 1; so that,

n

n + 1
< 1, for all n ∈ ℕ.

Thus, 1 an upper bound for A; and so A is bounded above. Since, A is
also nonempty, it follows from the Completeness Axiom that sup(A) exists
and

sup(A) ⩽ 1. (18)

We claim that
sup(A) = 1. (19)

In order to establish (19), argue by contradiction. Thus, in view of (18),
we assume that

sup(A) < 1; (20)

so that
1

sup(A)
> 1,

and
1

sup(A)
− 1 > 0. (21)

It follows from (21) and the Archimedean Property that there exists a
natural number m such that

1

m
<

1

sup(A)
− 1. (22)

Rearranging the terms in (22) leads to

sup(A) <
m

m + 1
. (23)

However, (23) is in contradiction with fact tat
m

m + 1
∈ A. Hence, (19) is

established.

Next, observe that
1

n
⩽ 1 for all n ∈ ℕ; thus,

1 +
1

n
⩽ 2, for all n ∈ ℕ,
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from which we get that

1

1 +
1

n

⩾
1

2
, for all n ∈ ℕ,

or
n

n + 1
⩾

1

2
, for all n ∈ ℕ. (24)

It follows from (24) that
1

2
is a lower bound for A. Consequently, inf(A)

exists and

inf(A) ⩾
1

2
. (25)

Since
1

2
∈ A, it follows that

inf(A) ⩽
1

2
. (26)

Combining (25) and (26) yields that

inf(A) =
1

2
.

□

3. Let B ⊆ ℝ be a non–empty subset which is bounded from below and put
ℓ = inf B. Prove that for every n ∈ ℕ there exists xn ∈ B such that

ℓ ⩽ xn < ℓ +
1

n
.

Proof: Assume that B ⊂ ℝ is nonempty and bounded below. Then, inf(B)

exists. Given any n ∈ ℕ,
1

n
> 0, since n ⩾ 1 > 0 for all n ∈ ℕ. It then follows

that

inf(B) < inf(B) +
1

n
.

Thus, there exists xn ∈ B such that

inf(B) ⩽ xn < inf(B) +
1

n
.
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Otherwise, all the elements of B would be above inf(B) +
1

n
, and inf(B) +

1

n
would be a lower bound for B greater than the greatest lower bound. Hence,
putting ℓ = inf B, we have that for any n ∈ ℕ there exists xn ∈ B such that

ℓ ⩽ xn < ℓ +
1

n
.


