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Solutions to Review Problems for Exam #2

1. Suppose that the sequence (xn) converges to a ∕= 0, where xn ∕= 0 for all n ∈ ℕ.

Prove that the sequence

(
1

xn

)
converges to

1

a
.

Proof: Assume lim
n→∞

xn = a, where a ∕= 0. Then, there exists N1 ∈ ℕ such that

n ⩾ N1 ⇒ ∣xn − a∣ <
∣a∣
2
.

It then follows by the triangle inequality that

n ⩾ N1 ⇒ ∣xn∣ >
∣a∣
2
.

Thus, for n ⩾ N1, ∣∣∣∣ 1

xn
− 1

a

∣∣∣∣ =
∣xn − a∣
∣a∣∣xn∣

<
2

∣a∣2
∣xn − a∣.

It then follows by the Squeeze Theorem for sequences that

lim
n→∞

∣∣∣∣ 1

xn
− 1

a

∣∣∣∣ = 0,

since lim
n→∞

∣xn − a∣ = 0. Consequently,

(
1

xn

)
converges to

1

a
.

2. Let (xn) denote a sequence that converges to x. Prove that for any m ∈ ℕ,

lim
n→∞

xmn = xm.

Proof: We use induction on m ∈ ℕ. The case m = 1 is true by the assumption
that (xn) converges to x.

Next, assume that lim
n→∞

xmn = xm, and write

xm+1
n = xn ⋅ xmn .

Thus, xm+1
n is the product of two convergent sequences by the inductive hy-

pothesis. We then have that

lim
n→∞

xm+1
n = lim

n→∞
xn ⋅ lim

n→∞
xmn = x ⋅ xm = xm+1.

This completes the induction argument.
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3. Let � > 0 and define yn =
1

(1 + �)n
for all n ∈ ℕ.

(a) Use the estimate (1 + �)n > n�, for all n ∈ ℕ, to prove that the sequence
(yn) converges to 0.

Solution: From (1 + �)n > n�, for all n ∈ ℕ, we obtain that

0 < yn <
1

�n
for all n ∈ ℕ.

It then follows by the Squeeze Theorem for sequences that (yn) converges
to 0. □

(b) Define xn = xn. Prove that if ∣x∣ < 1, then (xn) converges. What is
lim
n→∞

xn?

Solution: We show that lim
n→∞

∣xn∣ = 0. This will imply that (xn) converges

to 0 if ∣x∣ < 1.

Observe that
∣xn∣ = ∣x∣n

=
1(
1

∣x∣

)n

=
1

(1 + �)n
,

where � =
1

∣x∣
− 1 > 0, since ∣x∣ < 1. It then follows by part (a) that

lim
n→∞

∣xn∣ = lim
n→∞

1

(1 + �)n
= 0.

□

4. Let (xn) denote a sequence of real numbers.

(a) Prove that if (xn) converges then (x2n) converges.

Proof: Observe that x2n = xn ⋅xn. Consequently, if (xn) converges to x ∈ ℝ,
then (x2n) converges to x2.
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(b) Show that the converse of the statement in part (a) is not true.

Solution: Take xn = (−1)n for all n ∈ ℕ. Then, x2n = 1 for all n ∈ ℕ.
Thus, (x2n) converges, but (xn) does not. □

5. Let x, a and b denote a real numbers.

(a) Derive the factorization: xn − 1 = (x − 1)(xn−1 + xn−2 + ⋅ ⋅ ⋅ + x + 1).
Suggestion: Let S = 1 + x + x2 + ⋅ ⋅ ⋅+ xn−2 + xn−1 and compute xS and
xS − S.

Solution: Compute

xS = x+ x2 + ⋅ ⋅ ⋅+ xn−1 + xn = S − 1 + xn.

It then follows that
xS − S = xn − 1,

from which we get that

xn − 1 = (x− 1)S = (x− 1)(1 + x+ x2 + ⋅ ⋅ ⋅+ xn−2 + xn−1).

□

(b) Derive the factorization formula

an − bn = (a− b)(an−1 + an−2n+ an−3b2 + ⋅ ⋅ ⋅+ bn−1)

Solution: If b = 0, there is nothing to prove since an = aan−1. Thus,
assume that b ∕= 0 and write

an − bn = bn
[(a
b

)n
− 1
]

= bn(xn − 1),

where we have set x =
a

b
. Thus, using the factorization formula derived

in part (a),

an − bn = bn(x− 1)(1 + x+ x2 + ⋅ ⋅ ⋅+ xn−2 + xn−1)

= bn
(a
b
− 1
)(

1 +
a

b
+
(a
b

)2
+ ⋅ ⋅ ⋅+

(a
b

)n−2
+
(a
b

)n−1)

= (a− b)bn−1
(

1 +
a

b
+
a2

b2
+ ⋅ ⋅ ⋅+ an−2

bn−2
+
an−1

bn−1

)
= (a− b)

(
bn−1 + abn−2 + a2bn−3 + ⋅ ⋅ ⋅+ an−2b+ an−1

)
,
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which was to be shown. □

(c) Let a and b denote positive real numbers, and n a natural number. Prove
that

a > b if and only if an > bn.

Solution: Assume that a > b; then a− b > 0. It then follows that

an − bn = (a− b)(bn−1 + abn−2 + a2bn−3 + ⋅ ⋅ ⋅+ an−2b+ an−1) > 0,

since a and b are positive. Thus, an > bn.

Conversely, assume that an > bn. Then, an − bn > 0. Thus,

(bn−1 + abn−2 + a2bn−3 + ⋅ ⋅ ⋅+ an−2b+ an−1)(a− b) > 0.

Multiplying by the multiplicative inverse of bn−1 + abn−2 + a2bn−3 + ⋅ ⋅ ⋅+
an−2b+ an−1, which exists and is positive because a and b are positive, we
obtain that

a− b > 0,

which implies that a > b. □

6. Given a > 0 and n ∈ ℕ, prove that there exists a unique positive solution to
the equation xn = a.

Note: In this problem, you might need to use the binomial expansion

(a+ b)n =
n∑

k=0

(
n

k

)
akbn−k, where

(
n

k

)
=

n!

k!(n− k)!
, for k = 0, 1, 2, . . . , n.

Solution: Suppose first that a > 1. (Note that if a = 1, the x = 1 solves
xn = a).

Define A = {t ∈ ℝ ∣ t > 0 and tn ⩽ a}. Then, for the case a > 1, A ∕= ∅ since
1 ∈ A, because 1 = 1n < a. Next, we see that A is bounded. This follows from
the fact that a < an for all n ∈ ℕ since a > 1. It then follows that t ∈ A implies
that t > 0 and

tn < a < an,

from which we get that t < a, and therefore a is an upper bound for A. Thus,
the supremum of A exists. Let s = sup(A). We show that sn = a. For each
k ∈ ℕ, there exists tk ∈ A such that

s− 1

k
< tk ⩽ s.
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It then follows that
lim
k→∞

tk = s.

Consequently,
lim
k→∞

tnk = sn,

which implies that sn ⩽ a, since tnk ⩽ a for all k ∈ ℕ.

Suppose, by way of contradiction, that sn < a. Then, a− sn > 0 and therefore

a− sn
n∑

k=1

(
n

k

)
sk
> 0.

Then, there exists an integer m > 1 such that

1

m
<

a− sn
n∑

k=1

(
n

k

)
sk
.

Put 
 =
1

m
; then 0 < 
 < 1 and




(
n∑

k=1

(
n

k

)
sk

)
< a− sn. (1)

By the binomial expansion theorem,

(s+ 
)n = sn +
n∑

k=1

(
n

k

)
sk
n−k

< sn + 


(
n∑

k=1

(
n

k

)
sk

)
,

since 
 < 1. In then follows from the estimate in (1) that

(s+ 
)n < a,

which shows that s+ 
 ∈ A, which is a contradiction since s = sup(A). Conse-
quently, sn = a. Thus, xn = a has a positive solution for the case a > 1.
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To show that there is at most one solution to xn = a. Suppose that there exist
positive, real numbers, s1 and s2, such that sn1 = a and sn2 = a. It then follows
that

0 = sn1 − sn2 = (s1 − s2)(sn−11 + sn−21 s2 + ⋅ ⋅ ⋅ sn−12 ),

from which we obtain that s1 − s2 = 0, which implies that s1 = s2.

Finally, observe that if 0 < a < 1, then
1

a
> 1; so, by what we have just proved,

there exists a unique y ∈ ℝ with yn =
1

a
. Then

1

yn
= a, or

(
1

y

)n

= a. Thus,

x =
1

y
solves xn = a. □

7. Let a and b denote positive real numbers. For each natural number n, let a1/n

denote the unique positive solution to the equation xn = a.

(a) Prove that if b ⩽ 1, then bm ⩽ 1 for all m ∈ ℕ.

Solution: Suppose that b ⩽ 1. We prove that bm ⩽ 1 for all m ∈ ℕ by
induction on m.

For m = 1, the result follows by the assumption that b ⩽ 1.

Suppose that bm ⩽ 1 and consider

bm+1 = bm ⋅ b ⩽ (1) ⋅ (1) = 1.

□

(b) Show that if a > 1, then a1/n > 1 for all n ∈ ℕ.

Solution: Suppose that a > 1. We prove that a1/n > 1 by contradiction.
Thus, suppose that a1/n ⩽ 1. Then, by the result of the previous part,

(a1/n)n ⩽ 1,

from which we get that a ⩽ 1, which contradicts the hypothesis that a > 1.
Hence, a > 1 implies that a1/n > 1. □

(c) Prove that if a > 1, then am/n > 1 for all m,n ∈ ℕ, where am/n = (a1/n)m.

Solution: Suppose that a > 1. It then follows from part (b) that a1/n > 1.
Consequently, (a1/n)m > 1, which can be proved by an induction argument
like the one used in part (a). It then follows that

am/n > 1.

□
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8. Let a and b denote positive real, and n a natural number. Prove that

a > b if and only if a1/n > b1/n.

Proof: Let a1/n and b1/n be the unique positive solutions to the equations xn = a
and xn = b, respectively. Then, (a1/n)n = a and (b1/n)n = b. By the result of
part (c) of Problem 5,

a1/n > b1/n if and only if (a1/n)n > (b1/n)n,

from which we get that

a1/n > b1/n if and only if a > b.

9. Let a denote a positive real number.

(a) Show that if a > 1, then a − 1 > n(a1/n − 1) for all n ∈ ℕ. Deduce that
lim
n→∞

a1/n = 1, for a > 1.

Solution: Suppose that a > 1 and compute

a− 1 = (a1/n)n − 1 = (a1/n − 1)(a(n−1)/n + a(n−2)/n + ⋅ ⋅ ⋅+ a1/n + 1).

Then using the result of part (c) of Problem 7, we get that

a− 1 > (a1/n − 1) ⋅ n,

which was to be shown.

It then follows that

0 < a1/n − 1 <
a− 1

n
for all n ∈ ℕ.

Consequently, by the Squeeze Theorem for sequences,

lim
n→∞

a1/n = 1.

□
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(b) Prove that for any positive real number a, lim
n→∞

a1/n = 1.

Solution: Let a > 0. Then, a > 1, a = 1 or 0 < a < 1. If a > 1, then
result follows by part (a). If a = 1 the a1/n = 1 for all n ∈ ℕ and so the
result also holds true in this case. Thus, it remains to consider the case
0 < a < 1.

If 0 < a < 1, then
1

a
> 1, and so, by part (a),

lim
n→∞

(
1

a

)1/n

= 1.

It then follows that

lim
n→∞

1

a1/n
= 1,

from which we obtain that

lim
n→∞

a1/n = lim
n→∞

1
1

a1/n

=
1

lim
n→∞

1

a1/n

= 1.

□

10. Let (xn) denote a sequence of real numbers and (xnk
) denote a subsequence of

(xn).

(a) Prove that if (xn) converges then (xnk
) converges.

Proof: Suppose that (xn) converges to x; we show that (xnk
) also converges

to x.

Let " > 0 be given. Then, there exists N1 ∈ ℕ such that

n ⩾ N1 ⇒ ∣xn − x∣ < ". (2)

Since (xnk
) is a subsequence of (xn), we can find K1 ∈ ℕ such that

k ⩾ K1 ⇒ nk ⩾ N1. (3)

It then follows from (2) and (3) that

k ⩾ K1 ⇒ ∣xnk
− x∣ < ",

which shows that (xnk
) converges to x.
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(b) Show that the converse of the statement proved in part (a) is not true.

Solution: Let xn = (−1)n for all all n ∈ ℕ and define nk = 2k for all
k ∈ ℕ. Then, xnk

= 1 for all k ∈ ℕ; so that, (xnk
) converges to 1, but the

sequence (xn) does not converge. □

11. Let xn =
1√
n− 1

for n ⩾ 2. Show that (xn) converges and compute its limit.

Solution: We show that (xn) converges to 0.

Let " > 0 be given. Then, "2 > 0. By the Archimedean Property, there exists
no ∈ ℕ such that

n ⩾ no ⇒ 0 <
1

n
< "2.

Let N = no + 1. Then, n ⩾ N implies that n− 1 ⩾ no, from which we get that

n ⩾ N ⇒ 0 <
1

n− 1
< "2.

Hence,

n ⩾ N ⇒ 0 <
1√
n− 1

< ".

We have therefore proved that

lim
n→∞

1√
n− 1

= 0.

□

12. Let (xn) be a sequence of real numbers satisfying xn ⩾ 0 for all n ∈ ℕ and
define yn =

√
xn for all n ∈ ℕ. Suppose that (xn) converges to 0. Prove that

the sequence (yn) converges and compute its limit.

Proof: Assume that xn ⩾ 0 for all n ∈ ℕ and that (xn) converges to 0. Define
yn =

√
xn for all n ∈ ℕ.

Let " > 0 be given. Then, "2 > 0. Thus, since (xn) converges to 0, there exists
N ∈ ℕ such that

n ⩾ N ⇒ ∣xn∣ < "2.

Thus, since xn ⩾ 0 for all n ∈ ∞,

n ⩾ N ⇒ xn < "2,
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from which we get that
n ⩾ N ⇒

√
xn < ".

Thus, we have shown that for any " > 0, there exists N ∈ ℕ such that

n ⩾ N ⇒ ∣yn − 0∣ < ",

which is equivalent to saying that (yn) converges to 0.


