Department of Mathematics Pomona College

Course OutlineMath 30. Calculus IFall 2012

Time and Place:	MWF 11:00 am - 11:50 am, Millikan 218
Instructor:	Dr. Adolfo J. Rumbos
Office:	Andrew 259
Phone/e-mail:	ext. 18713 / arumbos@pomona.edu
Office Hours:	MWF 8:45 am - 9:45 am, or by appointment
Text:	The Calculus Primer by William L. Schaaf; Dover
Course Website	http://pages.pomona.edu/~ajr04747/
Prerequisite:	Placement Exam

Course Description. This course is an introduction to integral and differential Calculus. No previous knowledge of Calculus will be assumed. However, a good working knowledge of algebra and elementary functions are essential for a successful enjoyment of the course. There are three major goals in this course: (1) the acquisition of a thorough understanding of the concepts and ideas of integral and differential Calculus; (2) the development of an appreciation for the power of Calculus in solving real world problems, and the mastery of several of the tools from Calculus that are very useful in applications; (3) the improvement of formal reasoning and problem solving skills. Various applications will be used to motivate the concepts and as a source of interesting problems. The topics for the course are listed in the attached tentative schedule of lectures and examinations.

Assigned Readings and Problems. The lectures are not a substitute for studying the text and working the assigned problems. Problem sets will be assigned after every lecture, and collected on an alternate basis. Students are strongly encouraged to work on every assigned problem. No late homework will be accepted.

Grading Policy. Grades will be based on the homework, three 50-minute examinations, plus a comprehensive final examination. The grades will be computed as follows:

homework	20%	
three 50-minute exams		50%
final examination	30%	

Final Examination.

Time: Tuesday, December 189:00 am - 12:00 noon.Place: Millikan 218

Math 30

Tentative Schedule of Topics, Presentations and Examinations

Date		Торіс	
W	Sep 5	Introductory Example: Recovering a function from its rate of change	
F	Sep 7	Recovering a quantity from its rate of change	
M	Sep 10	Recovering a quantity from its rate of change (continued)	
W	Sep 12	Recovering a quantity from its rate of change (continued)	
F	Sep 14	Continuous compounding and the concept of limit	
M	Sep 17	Limit of sequences	
W	Sep 19	Limit of functions	
F	Sep 21	Limits (continued)	
M	Sep 24	Continuous functions	
W	Sep 26	Continuous functions (continued)	
F	Sep 28	Discontinuous functions and types of discontinuity	
M	Oct 1Proble	ms	
W	Oct 3Review	v	
F	Oct 5 Exam	1	
M	Oct 8The ard	ea function	
W	Oct 10Instant	caneous rates of change	
F	Oct 12Rates of	of change (continued)	
M	Oct 15The tangent line to the graph of a function		
W	Oct 17Approximating functions by linear functions		
F	Oct 19The derivative		
M	Oct 22 <i>Fall Re</i>	ecess	
W	Oct 24The de	privative as a rate of change	
F	Oct 26The co	pacept of differentiability	
M	Oct 29On dif	ferentiable functions	
W	Oct 31Differe	entiability	
F	Nov 2Deriva	tives of compositions	
M	Nov 5Review	<i>x</i>	
W	Nov 7 Exam	2	
F	Nov 9Proper	ties of derivatives	
M	Nov 12	Applications of the derivative	
W	Nov 14	Applications of the derivative (continued)	
F	Nov 16	The Fundamental Theorem of Calculus	

Math 30

Date		Торіс
М	Nov 19	The Fundamental Theorem of Calculus (continued)
W	Nov 21	Applications of the integral calculus
F	Nov 23	Thanksgiving Recess
М	Nov 26	Applications of the integral calculus (continued)
W	Nov 28	Predicting growth from rates of change
F	Nov 30	Predicting growth from rates of change (continued)
Μ	Dec 3	Problems
W	Dec 5	Review
F	Dec 7	Exam 3
М	Dec 10	Review
W	Dec 12	Review
Т	Dec 18	Final Examination