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Chapter 1

Preface

This set of notes has been developed in conjunction with the teaching of Math
30 (Calculus I) at Pomona College during the fall semester of 2012. The course
is an introduction to integral and differential Calculus. No previous knowledge
of Calculus will be assumed. However, a good working knowledge of algebra
and elementary functions are essential for a successful enjoyment of the course.

There are three major goals in the course: (1) the acquisition of a thorough
understanding of the concepts and ideas of integral and differential Calculus;
(2) the development of an appreciation for the power of Calculus in solving
real world problems, and the mastery of several of the tools from Calculus that
are very useful in applications; (3) the improvement of formal reasoning and
problem solving skills.

Various applications will be used to motivate the concepts and as a source
of interesting problems. We will begin with a discussion of a problems which is
very common in applications: Suppose that we have information about the rate
of change of a function for all time. Can we use this information to reconstruct
the function? In the next section we illustrate the ideas that go into answering
this question for the case in which we know the speed of a vehicle as a function
of time, and we want to find out the distance traveled by the vehicle in any time
interval.

5



6 CHAPTER 1. PREFACE



Chapter 2

Introductory Example:
Recovering a Function from
its Rate of Change

In this introductory example we illustrate the use of two important ideas in
Calculus: limits or approximations, and continuity. In later sections in these
notes, we expand on these ideas in more detail and we will see how they can be
used in several applications.

2.1 Recovering Distance from Speed

Imagine that the odometer in your car is broken. However, the computer in
your car is able to keep track of the speed of your car at any time, t, where
t is measured in hours. We therefore obtain the speed, v, of the vehicle as a
function of t, v(t), where v is measured in miles per hour. The picture in Figure
2.1.1 shows a possible graph of the speed, v, as a function of time, t. The figure

t

v

Figure 2.1.1: Graph of speed versus time
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8 CHAPTER 2. INTRODUCTORY EXAMPLE

shows a situation in which the vehicle accelerates from rest to a certain speed,
and travels at that speed for certain interval of time.

We would like to determine the distance traveled by the vehicle from the
time it is at rest and starts moving, call that time to, to any given time t. If we
are able to do this, we obtain a function of time, s(t), which gives the distance
traveled by the vehicle from time to to time t.

s(t) = distance traveled over the time interval [to, t]. (2.1)

Having introduced the function s defined in (2.1), we can reformulate the prob-
lem that we are studying in this section as follows:

Problem 2.1.1. Given the speed, v(t), of a vehicle at any time t � to, compute
the distance traveled by the vehicle over the interval of time [to, t].

Note that since the speed of the vehicle is the rate of change of distance
from a given point, Problem 2.1.1 is an instance of a problem in which we are
interested in computing a given function based on information provided by its
rate of change.

Example 2.1.2. The simplest example of Problem 2.1.1 is provided by the
situation in which the vehicle’s speed is constant; say,

v(t) = c, for all t � to, (2.2)

where the positive constant c has units of miles per hour. If t is measured in
hours, then the distance traveled by the vehicle from time to to time t is given
by

s(t) = c(t− to), for all t � to. (2.3)

Figure 2.1.2 shows the graph of the constant speed function in (2.2) over the

t

v

tto

c

Figure 2.1.2: Graph of speed in (2.2)

interval [to, t]. The graph of the distance function in (2.3) in shown in Figure
2.1.3.
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t

s

tto

������

Figure 2.1.3: Graph of s(t) in (2.3)

The result of Example 2.1.2 illustrates what happens in the general case of
a function whose rate of change with respect to time is constant. Suppose that
the rate of change of a function, f , is a constant, c, then

f(t) = f(to) + c(t− to), for all t. (2.4)

In order to understand what the expression in (2.4) is saying, rewrite it as

f(t)− f(to)

t− to
= c, for all t �= to. (2.5)

The quantity on the left of (2.5) measures that change in the amount of f over
the interval t− to per unit of time. The assumption that f has a constant rate
of change is the statement that the expressions on left of (2.5) are the same for
all t �= to.

Observe that the expression for s(t) in (2.3) is a special case of (2.4) in which
f(t) = s(t) and s(to) = 0, since s(t) measures the distance traveled over the
time interval [to, t].

The case in which the rate of a change of a function varies with time is more
complicated. In the remainder of this section we will introduce the ideas that
go into solving this problem. These ideas at are at the core of the development
of the integral and differential Calculus that we will be discussion in this course.

Example 2.1.3. In this example we consider the case in which the speed of the
vehicle varies with time in a manner that is proportional to the time elapsed.
Take to = 0 and assume that

v(t) = at for all t, (2.6)

where a is a positive constant of proportionality that has units of miles/hr2.
Thus, (2.6) describes a situation in which the vehicle accelerates from rest to
the speed of at mph after t hours. Figure 2.1.4 shows the graph of v(t) in (2.6).

We would like to compute the distance that the vehicle travels over the
interval [0, t] if the speed is given by the function in (2.6). We present here a
few ideas that can be used to solve this problem.



10 CHAPTER 2. INTRODUCTORY EXAMPLE
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Figure 2.1.4: Graph of speed in (2.6)

Note that v is not constant over the interval [0, t], so the procedure used
to solve the problem in Example 2.1.2 cannot be used here. We can however,
subdivide the time interval [0, t] into n small subintervals

[0, t1], [t1, t2], . . . , [tn−2, tn−1], [tn−1, tn], where tn = t. (2.7)

We assume that n is a very large positive integer. We may also assume that all
the subintervals in (2.7) have the same length, so that

tk − tk−1 =
t

n
, for all k = 1, 2, 3, . . . , n. (2.8)

Thus, as n increases the length of the intervals in (2.7) decreases. In fact, we
see from (2.8) that the lengths of the subintervals tends to 0. We express this
in symbols as

lim
n→∞(tk − tk−1) = lim

n→∞
t

n
= 0. (2.9)

The idea expressed in (2.9) is that of a limit. Later in these notes, we will spend
some time elaborating on the concept of limit and using this concept to make
calculations.

The next idea that we will use when solving the problem in Example 2.1.3
is that, since the length of the interval [tk−1, tk] is very small when n is large,
then we may assume that v(t) is approximately constant on that interval. In
symbols we may write

v(t) ≈ v(τk), for tk−1 � t � tk, (2.10)

where τk is any time in the interval [tk−1, tk]. The idea encapsulated in the
expression in (2.10) is that of continuity of the function v. Thus, in the solution
to the general problem of this section, we will assume that the function v is
continuous. The idea of continuity will be another major theme in this course.

Thus, if n is very large, we can use (2.10) and the result of Example 2.1.2 to
approximate the distance traveled by the vehicle over the time interval [tk−1, tk]
by

s(tk)− s(tk−1) ≈ v(τk)(tk − tk−1). (2.11)



2.1. RECOVERING DISTANCE FROM SPEED 11

An estimate for s(t), the distance traveled by the vehicle over the interval [0, t],
can then be estimated by

s(t) =

n∑
k=1

s(tk)− s(tk−1) ≈
n∑

k=1

v(τk)(tk − tk−1), (2.12)

where to = 0 and s(0) = 0. The approximations to s(t) in (2.12) get better and
better as n gets larger and larger. In fact, in the limit as n tends to infinity,
we expect the sums on the right–most expression in (2.12) to tend to the s(t),
which is what we are trying to compute. We write

s(t) = lim
n→∞

n∑
k=1

v(τk)(tk − tk−1), (2.13)

provided that the limit on the right–hand side of (2.13) exists. Later on in these
notes we will see how to determine if that limit exists in general; we will also
see how to compute those limits in some instances.

We will show how to compute the limit on the right–hand side of (2.13) for
the case in which

τk = k
t

n
, for k = 0, 1, 2, . . . , n. (2.14)

Using the definition of v in (2.6), (2.14) and (2.8) we can compute the sums on
the right–hand side of (2.13) as follows:

n∑
k=1

v(τk)(tk − tk−1) =

n∑
k=1

ak
t

n
· t
n

=
at2

n2

n∑
k=1

k.

(2.15)

In Problem 4 of Assignment 1 you will be asked to verify that

n∑
k=1

k =
n(n+ 1)

2
. (2.16)

Combine (2.15) and (2.16) to get

n∑
k=1

v(τk)(tk − tk−1) =
at2

2

n+ 1

n
, (2.17)

which can be written as

n∑
k=1

v(τk)(tk − tk−1) =
at2

2

(
1 +

1

n

)
,

or
n∑

k=1

v(τk)(tk − tk−1) =
at2

2
+

at2

2n
(2.18)
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Observing that the last term in (2.18) tends to 0 as n goes to infinity; that is,

lim
n→∞

at2

2n
= 0, (2.19)

we obtain from (2.18) and (2.19) that

lim
n→∞

n∑
k=1

v(τk)(tk − tk−1) =
at2

2
. (2.20)

Combining (2.13) and (2.20) then yields

s(t) =
1

2
at2, for all t � 0, (2.21)

which yields a solution to the problem we set out to solve. The formula in
(2.21) gives that distance traveled by the vehicle over the time interval [0, t] for
the case in which the vehicle’s speed is given by (2.6), where a ia a constant of
proportionality with units .

Remark 2.1.4. The argument outlined in the solution to the problem in Ex-
ample 2.1.3 raises a lot of questions. For instance, will we get the same answer
in (2.20) for any choice of τk’s different from that in (2.14)? How do we know
that we can make the assumption in (2.10)? We have already alluded to the
fact that the answer to the second question is related to the notion of continuity
that will be discussed later in these notes. We will also see that the assumption
of continuity will allow as to give a positive answer to the first question as well.
We will see this when we discuss the definite integral in these notes.

Remark 2.1.5. Another question we will need to address is that of the exis-
tence of the limits in (2.9) and (2.19). In these notes we will also spend some
time developing the notion of limit, deriving its properties, and considering the
various modes of limiting processes that come up in applications.

Remark 2.1.6. The limit expression

lim
n→∞

n∑
k=1

v(τk)(tk − tk−1),

provided that it exists for any choice of subdivisions of the interval [0, t], is called
the definite integral of v over the interval [0, t] and is denoted by∫ t

0

v(τ) dτ.

Using this notation, the solution to the general problem of recovering the dis-
tance from the from the speed is

s(t) =

∫ t

to

v(τ) dτ, for all t � to. (2.22)
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We will see when we study the theory of integration in more detail that, if R
denotes the rate of change of a function f with respect to t, and R is continuous
over an open interval containing [to, t] then,

f(t) = f(to) +

∫ t

to

R(τ) dτ, (2.23)

for all t in the interval of definition of f . Note that (2.22) is a special case of
(2.23) for f = s, R = v, and s(to) = 0.
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Chapter 3

The Concept of Limit

In the solution of the problem that we outlined in Chapter 2 we invoked the
notion of a limit–the idea that quantity will tend to a some value as another
variable tends to infinity or to certain value. For instance, in (2.19) we claimed
that

lim
n→∞

at2

2n
= 0. (3.1)

The idea behind (3.1) is that, as n gets larger and larger without bound, the
numbers

at2

2
,
at2

4
,
at2

6
,
at2

8
,
at2

10
, . . . , (3.2)

for fixed values of a and t, will tend to 0.
In this chapter we will consider two notions of limit:

(i) the limit of a sequence of numbers, and

(ii) the limit of a function.

The underlying the concept of limit to be discussed in these notes is the
notion of distance between two points on the real number line. If a and b are
two real numbers, the distance from a to b is simply the absolute value of a− b,

|a− b|.
The absolute value of a real number, x, is defined by

|x| =
{

x if x � 0;

−x if x < 0.

A property of distance between real numbers that will be very useful in calcu-
lations of limits is the following fact known as the Triangle Inequality: For any
real numbers a, b and c,

|a− b| � |a− c|+ |c− b|. (3.3)

15



16 CHAPTER 3. THE CONCEPT OF LIMIT

3.1 Limits of Sequences

The infinite list of numbers in (3.2) is an example of an infinite sequence. In
general, an infinite sequence

a1, a2, a3, . . .

is denoted by the symbol (an). Each an is a real number, and the index, n,

indicates the place of the number in the list. For example, if an =
1

n
, then the

symbol (an), or

(
1

n

)
, denotes the sequence

1,
1

2
,
1

3
,
1

4
, . . .

The notion of the limit of a sequence, (an), is the following. We say that an
converges to a limit �, is the distances |an − �| tend to 0 as n goes to infinity.
We write

lim
n→∞ |an − �| = 0, (3.4)

or
lim
n→∞ an = �. (3.5)

An intuitive meaning of the expressions in (3.4) is that the distances from the
elements of the sequence in (an) to the limit � can be made arbitrarily close to
0 by choosing sufficiently large indices n. This notion can be made very precise
as is shown in Appendix B. However, we will rely on the notion described above
along with a few facts about limits (many of which are proved in Appendix ??)
in order carry out calculations involving limits. We will list here several of those
facts and show some examples on how to apply them in calculations.

Theorem 3.1.1 (Limit Fact 1). The limit of the constant sequence (c) is c;
that is,

lim
n→∞ c = c.

Remark 3.1.2. We can see the intuitive notion of limit in this section to see
why the Limit Fact 1 is true. In the case of Limit Fact 1, an = c for all indices
n; thus, for all indices n,

|an − c| = |c− c| = 0,

so that the distance from each element of the sequence to c is 0.

Theorem 3.1.3 (Limit Fact 2). The limit of the sequence

(
1

n

)
is 0; that is,

lim
n→∞

1

n
= 0.

Remark 3.1.4. The proof of Limit Fact 2 relies on fundamental properties of
the real numbers and is presented in Appendix B.



3.1. LIMITS OF SEQUENCES 17

Theorem 3.1.5 (Squeeze Lemma). Let (an), (bn) and (cn) be three sequences.
Suppose that there exists a positive integer n1 such that

an � bn � cn, for all n � n1.

Assume in addition that the sequences (an) and (cn) converge to the same limit
�; that is,

lim
n→∞ an = lim

n→∞ cn = �.

Then, the sequence (bn) converges to �; that is,

lim
n→∞ bn = �.

Remark 3.1.6. The proof of the Squeeze Lemma is presented in Appendix B.

Example 3.1.7. Use the Squeeze Lemma and the fact that lim
n→∞

1

n
= 0 to

deduce that

lim
n→∞

1

n+ 1
= 0.

Solution: Observe that

n+ 1 > n, for n � 1,

from which we get that

1

n+ 1
<

1

n
, for n � 1,

so that

0 <
1

n+ 1
<

1

n
, for n � 1. (3.6)

Note that
lim
n→∞ 0 = 0 (3.7)

by the Limit Fact 1 and

lim
n→∞

1

n
= 0 (3.8)

by the Limit Fact 2. It then follows from (3.6)–(3.8) and the Squeeze Lemma
that

lim
n→∞

1

n+ 1
= 0,

which was to be shown. �

Theorem 3.1.8 (Limit Fact 3). Let (an) and (bn) be sequences that converge
to lim

n→∞ an and lim
n→∞ bn. Then, the sequences (an + bn) and (anbn) converge

and their limits are given by

(i) lim
n→∞(an + bn) = lim

n→∞ an + lim
n→∞ bn, and
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(ii) lim
n→∞(anbn) = lim

n→∞ an · lim
n→∞ bn.

Example 3.1.9. Compute the limit of the sequence

(
n+ 1

n

)
.

Solution: Observe that

n+ 1

n
= 1 +

1

n
, for all n � 1.

It then follows from Limit Facts 1 and 2, and from (i) in Limit Fact 3 that

lim
n→∞

n+ 1

n
= lim

n→∞

(
1 +

1

n

)

= lim
n→∞ 1 + lim

n→∞
1

n

= 1 + 0,

so that

lim
n→∞

n+ 1

n
= 1. (3.9)

�

Theorem 3.1.10 (Limit Fact 4). Let (an) and (bn) be sequences that converge
to lim

n→∞ an and lim
n→∞ bn. Assume also that lim

n→∞ bn �= 0. Then, the sequences(
1

bn

)
and

(
an
bn

)
converge and their limits are given by

(i) lim
n→∞

1

bn
=

1

lim
n→∞ bn

, and

(ii) lim
n→∞

an
bn

=
lim
n→∞ an

lim
n→∞ bn

.

Example 3.1.11. Compute the limit of the sequence

(
n

n+ 1

)
.

Solution: Observe that

n

n+ 1
=

1
n+ 1

n

, for all n � 1.

It then follows from Limit Fact 1, (i) in Limit Fact 4 and the result of Example
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3.1.13 in (3.9) that

lim
n→∞

n

n+ 1
= lim

n→∞
1

n+ 1

n

=
1

lim
n→∞

n+ 1

n

=
1

1
,

so that

lim
n→∞

n

n+ 1
= 1. (3.10)

�

Remark 3.1.12 (Alternate Solution to Problem in Example 3.1.13). Alterna-
tively, we can compute the limit in Example 3.1.13 as follows.

Divide numerator and denominator by n to get

n

n+ 1
=

1

1 +
1

n

. (3.11)

Next, take limits on both sides of (3.11) and use (ii) in Limit Fact 4 to compute

lim
n→∞

n

n+ 1
=

lim
n→∞ 1

lim
n→∞

(
1 +

1

n

)

=
1

1 + 0

= 1,

where we have also used Limit Facts 1 and 2.

Example 3.1.13 (Example 2.1.3 Revisited). In Example 2.1.3 we saw that, if
a vehicle moves at a speed given by

v(t) = at, for all t � 0, (3.12)

where a is a positive constant measured in units of miles/hr2 and t is measured
in hours, then an approximation to the distance, s(t), traveled by the vehicle
over the interval [0, t] is given by

sn(t) =

n∑
k=1

v(τk)(tk − tk−1) =
at2

2

n+ 1

n
, (3.13)
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(see (2.17) on page 11 in these notes). The expression in (3.13) defines a se-
quence, (sn(t)) , of approximations to the actual distance s(t). The result of
Example 3.1.9 shows that the the sequence (sn(t)) has a limit given by

lim
n→∞ sn(t) =

at2

2
lim
n→∞

n+ 1

n
=

at2

2
, (3.14)

where we have also used Limit Facts 1 and 3.
Thus, it appears from (3.14) that a solution to the problem posed in Example

3.1.9 is

s(t) =
at2

2
, for t � 0. (3.15)

In order to complete the solution of the problem posed in Example 3.1.9,
we still need to answer the two questions posed in Remark 2.1.4 on page 12 in
these notes. First, we need to see that the choice of subintervals

[0, t1], [t1, t2], . . . , [tn−2, tn−1], [tn−1, tn], where tn = t, (3.16)

and of times τk, for k = 1, 2, . . . , n, within the subintervals in (3.16), respectively,
will yield the same value in the limiting processes in (3.14), provided that the
lengths of the subintervals in (3.16) tend to 0 as n tends to infinity. Even before
we answer this question, we still need to make sense of the approximation

v(t) ≈ v(τk), for t ∈ [tk−1, tk], (3.17)

provided that the length of the subinterval is small.
The approximation in (3.17) will be justified by the continuity of the function

v defined in (3.12). We will discuss continuity in the next chapter. Before we
discuss continuity we need to develop the notion of limit of a function. This will
be done in the next section.

3.2 Limits of Functions

Let f denote a real–valued function defined on some subset of the real number
line. Let a denote a real number, which might or might not be in the domain of
definition of f . We consider the question of what happens to the values, f(t),
of f as t tends to a.

Example 3.2.1. Let f be the real valued function defined by

f(t) =
sin(t)

t
, for t �= 0. (3.18)

Note that the function f given in (3.18) is not defined at 0. We would like to
know what the values of f are doing as we take values of t (in radian measure)
that get closer and closer to 0. Table 3.1 shows the values of f(t) for values of
t ranging from 0.10 to 0.04 in decrements of 0.01. We see from Table 3.1 that
as the values of t decrease from 0.10 to 0.04 in steps of 0.01 (see first column of
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t sin(t)
sin(t)

t
(radians)

0.10 0.09983 0.9983
0.09 0.08988 0.9987
0.08 0.07991 0.9989
0.07 0.06994 0.9991
0.06 0.05996 0.9993
0.05 0.04998 0.9996
0.04 0.03999 0.9998

Table 3.1: Some values of
sin(t)

t
for t > 0

Table 3.1), the values of f(t) in the third column of the table increase towards

1. This suggests that the values of
sin(t)

t
tend 1 as the values t tend to 0. We

write

lim
t→0

sin(t)

t
= 1. (3.19)

Definition 3.2.2 (Informal Definition of Limit). Let f denote a function whose
domain is a subset of the real number line. Assume the domain of f is made up
of intervals and that a is in one of those intervals or is an end–point of some of
the intervals. (Note that a might or might not be in the domain of f). We say
that f has a limit L at a, if the distance of the values f(t) to L tends to 0 as
the values of t tend towards a in the domain of f . We write

lim
t→a

|f(t)− L| = 0,

or
lim
t→a

f(t) = L.

Example 3.2.3. The function f given in Example 3.2.1 has domain given by
the union of the intervals (−∞, 0) and (0,−∞). Note that 0 is an end–point of
both intervals, but 0 is not in the domain of f . The calculations in Example

3.2.1 suggest that lim
t→0

sin(t)

t
exists and equals 1; in other words, (3.19) is true.

In subsequent examples in this section we will show that this is indeed the case.

The discussion in the remainder of this section will parallel the discussion
of limits of sequences in Section 3.1. That is, we will state a few limit facts
(most of which will be proved in Appendix B) and present examples that show
how those limit facts can be used to compute limits. In Appendix B we give
a precise definition of the limit of a function and present proofs of most of the
limit facts.
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Theorem 3.2.4 (Function Limit Fact 1). Let f(t) = c for all real numbers t,
where c is a constant. Then, for any real number a,

lim
t→a

f(t) = c.

Thus, the limit of a constant function, c, is c. We may also write

lim
t→a

c = c.

Note that the statement in Function Limit Fact 1 makes sense according to
the informal definition of limit in Definition 3.2.2 since, in this case, f(t) = c
for all t in R; so that

|f(t)− c| = 0, for all t ∈ R.

Hence, the distance from f(t) to c is already 0.

Theorem 3.2.5 (Function Limit Fact 2). Let f(t) = t for all real numbers t.
Then, for any real number a,

lim
t→a

f(t) = a.

We may also write
lim
t→a

t = a.

Remark 3.2.6. To see why Function Limit Fact 2 is true according to Definition
3.2.2, note that, in this case,

|f(t)− a| = |t− a|;
so, we can make |f(t)− a| go to 0 by making |t− a| go to 0.

For future reference, we state Function Limit Fact 2 as follows:

lim
t→0

|t| = 0. (3.20)

Theorem 3.2.7 (Function Limit Fact 3). Let f and g be functions for which
lim
t→a

f(t) and lim
t→a

g(t) exist. Then, the functions f + g and fg have limits as t

approaches a given by

(i) lim
t→a

(f(t) + g(t)) = lim
t→a

f(t) + lim
t→a

g(t), and

(ii) lim
t→a

(f(t)g(t)) = lim
t→a

f(t) · lim
t→a

g(t).

Example 3.2.8. The function h given by h(t) = t+ 3 has a limit as t tends to
−2 given by

lim
t→−2

h(t) = lim
t→−2

t+ lim
t→−2

3, (3.21)

where we have used (i) in Function Limit Fact 3. Next, use Function Limit
Facts 1 and 2 to get from (3.23) that

lim
t→−2

h(t) = −2 + 3 = 1.
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Example 3.2.9. Show that lim
t→0

t

2
= 0.

Solution: Apply (ii) of Function Limit Fact 3 to get

lim
t→0

t

2
= lim

t→0

1

2
· lim
t→0

t. (3.22)

Next, apply Function Limit Fact 1 and (3.20) to get that

lim
t→0

t

2
=

1

2
· 0 = 0.

�

Theorem 3.2.10 (Function Limit Fact 4). Let f and g be functions for which
lim
t→a

f(t) and lim
t→a

g(t) exist. Assume also that lim
t→a

g(t) �= 0. Then, the functions

1

g
and

f

g
have limits as t approaches a given by

(i) lim
t→a

1

g(t)
=

1

lim
t→a

g(t)
, and

(ii) lim
t→a

f(t)

g(t)
=

lim
t→a

f(t)

lim
t→a

g(t)
.

Theorem 3.2.11 (The Squeeze Lemma). Let f , g and h denote a functions
whose domains consist of union of intervals that either contain a, or a is an
end–point of some of the intervals. (Note that a might or might not be in the
domains of f , g or h). Suppose that there exists a positive number δ such that

f(t) � g(t) � h(t), for |t− a| < δ,

and t is in the domains of f , g and h. Assume in addition that the limits of f
and h as t approaches a exist and that

lim
t→a

f(t) = lim
t→a

h(t) = L.

Then, the limit of g as t approaches a exists and

lim
t→a

g(t) = L.

Example 3.2.12. Let f be the real valued function defined by

f(t) =
1− cos t

t
, for t �= 0. (3.23)

We show that

lim
t→0

f(t) = 0. (3.24)
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Solution: According to the informal definition of limit in Definition 3.2.2, in
order to prove (3.24), it suffices to prove that

lim
t→0

|1− cos t|
|t| = 0, (3.25)

in view of (3.23). We will use the Squeeze Lemma to prove (3.25).
We will need the Law of Cosines: �

�������������������
��������

�
�
�
�
�
�
�

��

θ
a

c

b

Figure 3.2.1: Law of Cosines

c2 = a2 + b2 − 2ab cos(θ), (3.26)

where a, b and c are the lengths of the sides of a triangle pictured in Figure
3.2.1, and θ is the angle opposite the side of length c.

Consider a point, P , on the unit circle pictured in Figure 3.2.2. Suppose the

x

y

(1, 0)

P
�

��
�
�
��

�
�
�
��

t

t
�

Figure 3.2.2: Unit Circle

point P is at a distance of t > 0 along the circular arc from (1, 0) to P . Let �
denote the distance from (0, 1) to P along the straight line segment connecting
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them. Applying the Law of Cosines (3.26) to the triangle in Figure 3.2.2 with
vertices (0, 0), (1, 0) and P we obtain

�2 = 12 + 12 − 2 cos t,

from which we get

1− cos t =
�2

2
(3.27)

Taking absolute values on both sides of (3.27) and using the fact that

|�| � |t|,

that is, the distance from P to (1, 0) along a straight line segment is shorter
than that along any other path connecting the two points, we obtain from (3.27)
that

|1− cos t| � |t|2
2

. (3.28)

Assuming that t �= 0 and dividing on both sides of (3.28) by |t|, we obtain from
(3.28) that

0 <
|1− cos t|

|t| <
|t|
2
, for 0 < |t| < π

2
. (3.29)

The limit in (3.25) now follows from (3.29) by an application of the Squeeze
Lemma since

lim
t→0

0 = 0,

by Function Limit Fact 1, and

lim
t→0

|t|
2

= 0,

by the result of Example 3.2.9.

Example 3.2.13. Compute lim
t→0

cos t.

Solution: We show that

lim
t→0

cos t = 1, (3.30)

or

lim
t→0

| cos t− 1| = 0. (3.31)

Observe that, for t �= 0,

| cos t− 1| = |1− cos t|

= |t| · |1− cos t|
|t|

(3.32)
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Next, apply (ii) of Function Limit Fact 3 to the result of (3.32) to get

lim
t→0

| cos t− 1| = lim
t→0

|t| · lim
t→0

|1− cos t|
|t|

= 0 · 0

= 0,

where we have also applied (3.20) and (3.25). We have therefore demonstrated
(3.31). �

Example 3.2.14. Show that lim
t→0

sin t

t
= 1.

Solution: Refer to the unit circle pictured in Figure 3.2.3. We first consider

x

y

(1, 0)

�

�

�
�
�
�
�
�
�
��

P

t

Q (1, tan t)

Figure 3.2.3: Comparing sin t, t and tan t.

the case in which a point P on the unit circle in the xy–plane has Cartesian

coordinates (cos t, sin t), where 0 < t <
π

2
. Comparing the lengths of the vertical

line segment from P to the x–axis, the arclength along the circle from P to (1, 0),
and the length from Q to (1, 0) along the tangent line to the circle at (1, 0), we
see from the sketch in Figure 3.2.3 that

sin t < t < tan t, for 0 < t <
π

2
,

from which we get that

sin t < t <
sin t

cos t
, for 0 < t <

π

2
. (3.33)
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Taking reciprocals in all the terms on the inequalities in (3.33) yields

cos t

sin t
<

1

t
<

1

sin t
, for 0 < t <

π

2
. (3.34)

Multiplying all terms of the inequality in (3.34) by sin t, for 0 < t <
π

2
, we

obtain that

cos t <
sin t

t
< 1, for 0 < t <

π

2
, (3.35)

where we have used the fact that sin t > 0 for 0 < t <
π

2
.

Next, observe that each one of the functions in terms of the inequalities in
(3.35) is even in their domains of definitions; that is,

cos(−t) = cos t, for all t

and
sin(−t)

−t
<

sin t

t
, for t �= 0,

we can say that

cos t <
sin t

t
< 1, for 0 < |t| < π

2
. (3.36)

Thus, in view of the result of Example 3.2.13 and Function Limit Fact 1, we
obtain from (3.36) and the Squeeze Lemma that

lim
t→0

sin t

t
= 1, (3.37)

which we wanted to show. �

Example 3.2.15. Show that lim
t→0

sin t = 0.

Solution: For t �= 0, we can write

sin t = t · sin t
t

. (3.38)

Taking limits on both sides of (3.38) and using (ii) in Function Limit Fact 3 and
(3.37), we obtain from (3.38) that

lim
t→0

sin t = lim
t→0

t · lim
t→0

sin t

t

= 0 · 1

= 0,

which was to be shown. �
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Example 3.2.16. Show that lim
t→a

sin t = sina, for any real number a.

Solution: We show that

lim
t→a

| sin t− sina| = 0. (3.39)

In order to show (3.39) we start with the following trigonometric identities

sin(α+ β) = sinα cosβ + cosα sinβ (3.40)

and
sin(α− β) = sinα cosβ − cosα sinβ. (3.41)

Subtracting (3.41) from (3.40) leads to

sin(α+ β) − sin(α − β) = 2 cosα sinβ. (3.42)

Next, put
α+ β = t (3.43)

and
α− β = a. (3.44)

Solve (3.43) and (3.44) for α and β to get

α =
t+ a

2
(3.45)

and

β =
t− a

2
. (3.46)

Substitute (3.43) and (3.44) into the left–hand side of (3.42), and (3.45) and
(3.46 into the right–hand side of (3.42) to get

sin(t)− sin(a) = 2 cos

(
t+ a

2

)
sin

(
t− a

2

)
. (3.47)

Next, take absolute values on both sides of (3.47) and use the estimates

| cos θ| � 1, for all θ,

and
| sin θ| � |θ|, for |θ| < π

2
(see Problems 1 and 2 in Assignment #5), to obtain

| sin(t)− sin(a)| � |t− a|, for |t− a| < π,

so that
0 � | sin(t)− sin(a)| � |t− a|, for |t− a| < π. (3.48)

Finally, use the facts that

lim
t→a

0 = 0 and lim
t→a

|x− a| = 0

to get from (3.48) and the Squeeze Lemma that

lim
t→a

| sin t− sina| = 0,

which was to be shown. �



Chapter 4

The Concept of Continuity

We will see that the notion of limit discussed in the previous chapter is instru-
mental in defining the main concepts in Calculus: the integral and the derivative.
In this chapter we see how limits can be used to define the concept of a con-
tinuous function. Continuity of the speed function in Example 2.1.3 was one
of the crucial ingredients in the solution of the introductory problem that was
outlined in that example.

4.1 Continuous Functions

In Example 3.2.16 we saw that

lim
t→a

sin t = sin a.

In Problem 2 of Assignment #4 it is shown that, if p denotes a polynomial
function defined by

p(t) = co + c1t+ c2t
2 + c3t

3 + · · ·+ cnt
n, for t ∈ R,

where co, c1, c2, . . . , cn are real constants, then

lim
t→a

p(t) = p(a);

and in Problem 5 of Assignment #5 it is shown that

lim
t→a

cos t = cos a.

A function, f , whose limit as t tends to a can be computed by evaluating the
function at a,

lim
t→a

f(t) = f(a), (4.1)

is said to be continuous at a. We will use (4.1), or its equivalent form,

lim
t→a

|f(t)− f(a)| = 0,

as the definition of continuity of f at a.

29
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Definition 4.1.1 (Continuous Function). Let f be a real–valued function de-
fined in a domain containing a. We say that f is continuous at a if

lim
t→a

|f(t)− f(a)| = 0. (4.2)

If f is continuous at every point in its domain, we say that f is continuous on
that domain.

Thus, according to (4.2), f is continuous at a if f is defined at a, and the
values f(t) can be made arbitrarily close to f(a) by taking t in the domain of f
sufficiently close to a.

Polynomial functions and the trigonometric functions sin and cos are exam-
ples of continuous functions on their entire domain of definition. In this section
we learn how to identify more classes of continuous functions by learning a few
properties of continuous functions.

Theorem 4.1.2 (Continuous Functions Fact 1). Let f and g denote functions
that are continuous at a; then, the functions f + g and fg are also continuous
at a. We then have that

lim
t→a

(f + g)(t) = f(a) + g(a),

and

lim
t→a

(fg)(t) = f(a) · g(a).

Remark 4.1.3. Continuous Functions Fact 1 is a consequence of Function
Limit Fact 3.

Example 4.1.4. The real–valued function f defined by

f(t) = t sin t+ (1 − t2) cos t, for all t ∈ R

is continuous on R since it is a sum of products of continuous functions.

Theorem 4.1.5 (Continuous Functions Fact 2). Let f and g denote functions

that are continuous at a. Suppose g(a) �= 0; then, the functions
1

g
and

f

g
are

also continuous at a. Consequently, if f and g are continuous at a, and g(a) �= 0,
then

lim
t→a

1

g(t)
=

1

g(a)
,

and

lim
t→a

f(t)

g(t)
=

f(a)

g(a)
.

Remark 4.1.6. Continuous Functions Fact 2 is a consequence of Function
Limit Fact 4.
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Example 4.1.7. The real–valued function f defined by

f(t) =
sin t

t
, for t �= 0

is continuous at a �= 0.

Definition 4.1.8 (Composition of Functions). Let f g be two functions such
that g(t) lies in the domain of f for all t in the domain of g. We can then define
the composition of f and g, denoted f ◦ g, by

f ◦ g(t) = f(g(t)), for t in the domain of g.

Example 4.1.9. The function h given by

h(t) = sin(t2), for all t ∈ R,

is the composition of the trigonometric function sin and the polynomial function
p given by p(t) = t2 for all t in R.

Theorem 4.1.10 (Continuous Functions Fact 3). Let f and g be functions such
that g is continuous at a and f is continuous at g(a). Then, the composition
f ◦ g is continuous at a. We therefore have that

lim
t→a

(f ◦ g)(t) = f(g(a)).

Example 4.1.11. The function h given by

h(t) = sin(t2), for all t ∈ R.

Then, h is continuous at every a in R; so that,

lim
t→a

sin(t2) = sin(a2),

for all a is R.

Example 4.1.12. The function g given by

g(t) = (sin t)2, for all t ∈ R.

is the composition of the polynomial function, p, given by

p(u) = u2, for all u ∈ R,

the trigonometric function sin. In fact,

g(t) = p ◦ sin(t) = p(sin t), for all t ∈ R.

Since, p and sin are continuous on R, it follows that g is continuous on R and

lim
t→a

(sin t)2 = (sin a)2 = sin2 a,

for all a is R.
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4.2 Discontinuous Functions

We begin this section with an example.

Example 4.2.1. We saw in Example 4.1.7 that the real–valued function f
defined by

f(t) =
sin t

t
, for t �= 0, (4.3)

is continuous everywhere except at a = 0. However, in Example 3.2.14 we saw
that

lim
t→0

sin t

t
= 1. (4.4)

The limit fact in (4.4) suggests that we can define a new function, which we will

denote by f̂ , which agrees with f for t �= 0, and is 1 at t = 0:

f̂(t) =

⎧⎪⎪⎨⎪⎪⎩
sin t

t
, if t �= 0;

1, if t = 0.

(4.5)

The new function f̂ defined in (4.5) is continuous at 0 (in fact, it is continuous

at all points in R) and it agrees with f for t �= 0. We say that f̂ removes the
discontinuity of f at 0; or that f has a removable discontinuity at 0. Figure
4.2.1 shows a sketch of the graph of y = f̂(t).

Figure 4.2.1: Sketch of graph of y = f̂

Definition 4.2.2 (Removable Discontinuity). A function f , which is not defined
at a, is said to have a removable discontinuity at a if lim

t→a
f(t) exists. In
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order to remove the discontinuity of f at a, we define f at a to be lim
t→a

f(t);

that is,
f(a) = lim

t→a
f(t).

Example 4.2.3. The function f defined by

f(t) = t · sin
(
1

t

)
, for t �= 0, (4.6)

is discontinuous at 0 since the argument of the sine function in (4.6) is not
defined at 0. However, we will see in this example that lim

t→0
f(t) exists; in fact,

we will see that

lim
t→0

[
t · sin

(
1

t

)]
= 0. (4.7)

To see why (4.7) is true, take absolute in (4.6) to obtain

|f(t)| = |t|
∣∣∣∣sin(1

t

)∣∣∣∣ , for t �= 0. (4.8)

Then, use the inequality

| sin θ| � 1, for all θ ∈ R,

to obtain from (4.8) that

0 � |f(t)| � |t|, for t �= 0. (4.9)

Thus, by the Squeeze Lemma, it follows from (4.9) that

lim
t→0

f(t) = 0, (4.10)

which is (4.7).
It follows from (4.10) that f has a removable discontinuity at 0, an so f can

be defined at 0 to make it continuous everywhere:

f(t) =

⎧⎪⎪⎨⎪⎪⎩
t · sin

(
1

t

)
, if t �= 0;

0, if t = 0.

(4.11)

A sketch of the graph of f is shown in Figure 4.2.2.

Thus, if f is not continuous at a, but lim
t→a

f(t) exists, f can be defined at

a so as to make f continuous at a. However, if lim
t→a

f(t) does not exist, the

discontinuity at a cannot be removed. There are several ways in which the limit
lim
t→a

f(t) might fail to exist. We present here three examples that illustrate how

this might happen.
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Figure 4.2.2: Sketch of graph of f defined in (4.11)

Example 4.2.4. Let f denote the real–valued function defined by

f(t) =
sin t

|t| , for t �= 0. (4.12)

Note that f is not continuous at a = 0. In order to study the nature of the
discontinuity of f at 0, consider a sketch of the graph of y = f(t), for t �= 0
shown in Figure Observe from the sketch in Figure 4.2.3 that the value f(t)

Figure 4.2.3: Sketch of graph of f defined in (4.12)

appear to be approaching +1 as t approaches 0 along positive values, and it
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appears to approach −1 as t approaches 0 along negative values. We express
these facts in symbols as follows

lim
t→0+

f(t) = 1, (4.13)

and
lim
t→0−

f(t) = −1, (4.14)

The expressions in (4.13) and (4.14) are known as one–sided limits.
Thus, the one–sided limits of f as t approaches 0 exist; but lim

t→0
f(t) does

not exist. The reason that the limit of the function f defined in (4.12) as
t approaches 0 does not exist follows from the uniqueness of limits shown in
Appendix B. In other words, if a limit exists as t approaches a given number,
it can be at most one value. For the function in (4.12), f(t) approaches 1 and t
approaches 0 through positive values, and f(t) approaches −1 as t approaches 0
through negative values; +1 and −1 are two distinct values. In this case, we say
that f has a jump discontinuity at a = 0. This type of discontinuity cannot
be removed.

Definition 4.2.5 (Jump Discontinuity). A function f , which is not defined at
a, is said to have a jump discontinuity at a if the one–sided limits lim

t→a+
f(t)

and lim
t→a−

f(t) exist, but

lim
t→a+

f(t) �= lim
t→a−

f(t).

Example 4.2.6. The function f defined by

f(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if t < 0;

−2t, if 0 � t < 1
2 ;

4(1− t), if 1
2 � t < 1

0 if t � 1,

(4.15)

is continuous everywhere except at
1

2
, where f has a jump discontinuity. To see

why this assertion is true, since f is defined in a piecewise manner, we need to
compute the one–sided limits at the endpoints of the intervals

(−∞, 0),

(
0,

1

2

)
,

(
1

2
, 1

)
and (1,+∞). (4.16)

To see that f is continuous on each of the open intervals in (4.16), we note that,
according to (4.15), f is either a constant or a polynomial; thus, f is continuous
on those intervals. It remains, then, to see what happens at the endpoints of
the intervals in (4.16).

At 0, we compute the one–sided limits

lim
t→0−

f(t) = lim
t→0−

0 = 0, (4.17)
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and
lim
t→0+

f(t) = lim
t→0+

(−2t) = 0. (4.18)

Since the two one–sided limits in (4.17) and (4.18) are equal, it follows that

lim
t→0

f(t) = 0 = f(0),

which shows that f is continuous at 0. Similar calculations at 1; namely,

lim
t→1−

f(t) = lim
t→0−

4(1− t) = 0

and
lim
t→1+

f(t) = lim
t→0−

0 = 0,

which show that
lim
t→1

f(t) = 0 = f(1);

so that f is continuous at 1.

On the other hand, at
1

2
we obtain that

lim
t→ 1

2
−
f(t) = lim

t→ 1
2
−
(−2t) = −1, (4.19)

while
lim

t→ 1
2
+
f(t) = lim

t→ 1
2
+
4(1− t) = 2. (4.20)

Since the one–sided limits in (4.19) and (4.20), are not equal, it follows that f

has a jump discontinuity at
1

2
. The values of the one–sided limits indicate that

the values of f(t) “jump” from −1 to 2 ( a jump of 3 units), hence the name of
the discontinuity.

Figure 4.2.4 shows a sketch of the graph of f defined in (4.15).

t

y

�
�
�

�
�
�
�
�
�

Figure 4.2.4: Sketch of graph of f in (4.15).



4.2. DISCONTINUOUS FUNCTIONS 37

The function in Example 4.2.6 is an example of a piecewise continuous func-
tion.

Definition 4.2.7 (Piecewise Continuous Function). A function f defined on a
closed and bounded interval, [a, b], is said to be piecewise continuous if

lim
t→a+

f(t) = f(a),

lim
t→b−

f(t) = f(b),

and f is continuous on (a, b) except for a finite number of jump discontinuities
or removable discontinuities.

Example 4.2.8. Consider the function f defined by

f(t) =
1

t
, for t �= 0. (4.21)

Note that f defined in (4.21) is continuous everywhere except at 0 because it is
the ratio of two continuous functions with the denominator not equal to 0 for
t �= 0. In this case the one–sided limits as t approaches 0 do not exist; in fact,

lim
t→0+

1

t
= +∞, (4.22)

and

lim
t→0−

1

t
= −∞. (4.23)

The meaning of the expressions in (4.22) and (4.23) can be made precise (this is
done in Appendix B); however, they can be interpreted as follows: The values

of
1

t
increase without bound as t tends to 0 through positive values; so that, no

limiting value is attained; similarly, the values of
1

t
decrease without bound as

t tends to 0 through negative values, so that that not limiting value is attained
in this case either. Geometrically, (4.22) and (4.23) imply that the graph of

y =
1

t
, for t �= 0, has a vertical asymptote at t = 0; i.e, the y–axis is a vertical

asymptote to the graph of y =
1

t
, for t �= 0, sketched in Figure 4.2.5. For this

reason, a discontinuity of the time that f(t) =
1

t
, for t �= 0, has t = 0 is called

the vertical asymptote discontinuity.

Definition 4.2.9 (Vertical Asymptote Discontinuity). A function f , which is
not defined at a, is said to have a vertical asymptote discontinuity at a if
either

lim
t→a+

f(t) = ±∞,

or
lim

t→a−
f(t) = ±∞.
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Figure 4.2.5: Sketch of graph of f defined in (4.21)

Example 4.2.10. The tangent function, tan, given by

tan(t) =
sin t

cos t
, for t �= (2k + 1)

π

2
, (4.24)

for any integer k, is continuous everywhere except at odd multiples of
π

2
, at

which the graph of y = tan t has vertical asymptotes (see sketch in Figure 4.2.6).

Figure 4.2.6: Sketch of graph of y = tan t

In the previous examples the limit of f as t approaches a fails to exist because
either the one–sided limits at a are not equal, or |f(t)| grows without bound as
t approaches a from the left or from the right. In the next example we see a
situation in which the values of f(t) remain bounded in a neighborhood of a,
and the one–sided limits fail to exist.
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Example 4.2.11. Let f be given by

f(t) = sin

(
1

t

)
, for t �= 0. (4.25)

An examination of the graph of y = f(t), obtained using WolframAlpha R©, in
Figure 4.2.7 reveals that the values of f(t), where f is as defined in (4.25)

Figure 4.2.7: Sketch of graph of y = sin(1/t) for t �= 0

appears to be approaching any value real in the y–axis between −1 and 1 as t
approaches 0; thus, no limiting value for f(t) can be attained in this case, since,
as shown in Appendix B, if f has a limit at 0, it can be at most one value.

In these notes, we shall refer to a discontinuity of the type illustrated in
Example 4.2.11 as an essential discontinuity. In an essential discontinuity,
the values of f(t) appear to be approaching a range of values as t approaches
the point of discontinuity. In the case of the function in Example 4.2.11, this
assertion can be made precise by the use of the following fact about the relation
between limits of functions and limits of sequences:

Theorem 4.2.12 (Functional Limits and Sequential Limits Fact). A real valued
function f has a limit, L, as t approaches a if an only if, for every sequence of
real numbers, (tn), that converges to a,

lim
n→∞ f(tn) = L.

Theorem 4.2.12 is discussed in Appendix B. We will have occasions to apply
this theorem later on in these notes. For the case of the function f defined in
(4.25), we can see that the limit of f as t approaches 0 does not exist since we
can come up with a range of values; namely,

sin θ, for − π

2
� θ � π

2
,
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and a range of sequences; namely, (tn) with

tn =
1

θ + 2πn
, for n = 1, 2, 3, . . . ,

such that

lim
n→∞ tn = 0,

and

lim
n→∞ sin

(
1

tn

)
= sin θ. (4.26)

Thus, according to Theorem 4.2.12, the limit of sin

(
1

t

)
as t approaches 0

cannot exist since θ in (4.26) can be chosen to be any value in the interval[
−π

2
,
π

2

]
.

4.3 Properties of Continuous Functions

In this section we list a few properties of continuous functions that are very
useful in applications. We will have several occasions in these notes to use
these properties. Proofs of these properties may be found in Appendix ??. The
first of these properties is known and the Intermediate Value Theorem. It is
the property behind the notion that the graph of a continuous function can be
drawn or sketched without having to lift the pencil from the paper. The second
property states that a continuous function attains its maximum or minimum
values on closed and bounded intervals. This last properties is very useful when
finding maxima or minima of quantities that may be assumed to be continuous
(optimization problems).

Theorem 4.3.1 (The Intermediate Value Property). Suppose that f is contin-
uous on an open interval that contains the closed interval [a, b]. Suppose that
f(a) < f(b) or f(a) > f(b); then, for any value y between f(a) and f(b), there
exists a point c in the interval (a, b) for which

f(c) = y. (4.27)

Remark 4.3.2. Theorem 4.3.1 is useful when one is trying to see whether the
equation

f(x) = y (4.28)

has a real solution for a given real number y. It is it known that f is continuous
on some interval containing the points a and b, with a < b, and it is also known,
or instance, that f(a) < y < f(b), then, according to (4.27), the Intermediate
Value Property of continuous functions guarantees that the equation in (4.28)
has at least one solution x = c in in the interval (a, b). Thus, the Intermediate
Value Property can be used to locate solutions.
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Example 4.3.3. In this example we show that any cubic polynomial of the
form p(t) = t3 + bt2 + ct + d, where a, b, c and d are real constants, has at
least one real root; that is, there exists at least one real solution to the cubic
polynomial equation

t3 + bt2 + ct+ d = 0,

or

p(t) = 0. (4.29)

Since p is continuous on R, we can show that (4.29) has at least one real solution
by applying the Intermediate Value Property of continuous functions. In order
to do this, we will show that there exists a positive real number R such that

p(−R) < 0 < p(R). (4.30)

Then, by Theorem 4.3.1, there exists c in the interval (−R,R) such

p(c) = 0.

In order to establish (4.30), first assume that t �= 0 and divide p(t) by t3 to
get that

p(t)

t3
= 1 +

b

t
+

c

t2
+

d

t3
, for t �= 0. (4.31)

Next, assume that |t| � 1 and use the inequalities |t| � |t|2 and |t| � |t|3, for
|t| � 1, to obtain from (4.31) and the triangle inequality that

p(t)

t3
� 1− 1

|t| [|b|+ |c|+ |d|], for |t| � 1. (4.32)

Next, choose R to be the larger of 1 and
2

|b|+ |c|+ |d|+ 1
. It then follows from

(4.32) that
p(t)

t3
>

1

2
, for |t| � R. (4.33)

We then get from (4.33) that

p(R) >
R3

2
> 0 and p(−R) < −R3

2
< 0,

which is (4.30).

Definition 4.3.4 (Bounded Functions). We say that a real valued function, f ,
is bounded over some subset, A, of the domain of f if there exists a positive
constant M such that

|f(t)| � M, for all t ∈ A.
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Example 4.3.5. The function f defined by f(t) =
1

t
, for t �= 0, is bounded

over the interval [1, 2] since

|f(t)| � 1, for 1 � t � 2.

However, f is not bounded over (0, 1) since

lim
t→0+

1

t
= +∞.

The next theorem states that continuous function defined over a closed and
bounded interval must be bounded.

Theorem 4.3.6 (Boundedness Property of Continuous Functions). Suppose
that f is continuous on the closed interval [a, b], then there exists a real value
M > 0 such that

|f(t)| ≤ M for all t in the interval [a, b].

That is, f is bounded on [a, b].

A continuous function not only is bounded over a closed and bounded inter-
val, but it also attains its maximum and minimum values in that interval; more
precisely,

Theorem 4.3.7 (Maximum Property of Continuous Functions). Suppose that
f is continuous on the closed interval [a, b], then there exists t1 in [a, b] such
that

f(t) � f(t1) for all t in the interval [a, b].

That is, f takes on its maximum value on [a, b] at a point t1 in [a, b].

Theorem 4.3.8 (Minimum Property of Continuous Functions). Suppose that
f is continuous on the closed interval [a, b], then there exists t2 in [a, b] such
that

f(t) � f(t2) for all t in the interval [a, b].

That is, f takes on its minimum value on [a, b] at a point t2 in [a, b].

The boundedness property is also true for piecewise continuous functions
(see Definition 4.2.7 on page 37 in these notes).

Theorem 4.3.9 (Boundedness Property of Piecewise Continuous Functions).
Suppose that f is piecewise continuous on the closed interval [a, b], then there
exists a real value M > 0 such that

|f(t)| ≤ M for all t in the interval [a, b].

That is, f is bounded on [a, b].



Chapter 5

Integral Calculus

In Chapter 2 we alluded to the fact that the notion of the integral of a function
has to do with the solution to the problem that we presented in that chapter;
namely, the problem of recovering a function from its rate of change. We begin
this chapter with a geometric problem, which on a first encounter does not seem
to be related to the problem discussed in Chapter 2: the problem of computing
areas of bounded plane regions.

5.1 The Area Problem

In this section we discuss a geometric problem that goes back to antiquity:
determining the area of a bounded plane region.

Problem 5.1.1 (Area Problem). Given a bounded region, R, in the xy–plane,
if possible, compute the area of R; denoted area(R).

If the region R is a polygonal region, like the one shown in Figure 5.1.1,
then the area problem is not hard to solve. For instance, we can divide the
region into triangles, as shown in Figure 5.1.2 We can then use the formula for
computing the area of a triangle, T , with base of length b and height h:

area(T ) =
1

2
bh. (5.1)

(See the triangle in Figure 5.1.3 to see the meanings of b and h in the formula
in (5.1)). We can then obtain a formula for the area of the region R by adding
the areas of all the triangles that make up R. More explicitly, suppose that
there are n triangles that make up the region R; denote them by T1, T2, . . . , Tn.
Then,

area(R) =
n∑

k=1

area(Tk).

43
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Figure 5.1.1: Polygonal Plane Region

Example 5.1.2. Compute the area of the octagon inscribed in the circle of
radius r shown in Figure 5.1.4.
Solution: The octagon can be divided into eight congruent triangles as shown
in Figure 5.1.5. Thus, the area of the octagon, R, shown in Figures 5.1.4 and
5.1.5 is given by

area(R) = 8 · area(T ), (5.2)

where T is an isosceles triangle with equal sides of length r and angle, θ, between
the two equal sides given by

θ =
2π

8
=

π

4
. (5.3)

We use the formula in (5.1) to compute the area of the triangle T pictured
in Figure 5.1.6. The dashed line segment in Figure 5.1.6 is the perpendicular
bisector of the base of the triangle since T is isosceles; it is also the angular
bisector to the angle θ in (5.3). Its length is therefore h, the height of the
triangle. Using the definition of the trigonometric functions sin and cos, we
obtain from the sketch in Figure 5.1.6 that

h = r cos

(
θ

2

)
, (5.4)

and
b

2
= r sin

(
θ

2

)
,

or

b = 2r sin

(
θ

2

)
. (5.5)
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Figure 5.1.2: Polygonal Plane Region Divided into Triangles

Combining (5.1), (5.4) and (5.5) we obtain that the area of the triangle T in
Figure 5.1.6 is

area(T ) =
1

2
r2
[
2 sin

(
θ

2

)
cos

(
θ

2

)]
. (5.6)

Next, use the trigonometric identity

sin(2β) = 2 sinβ cosβ

to get from (5.6) that

area(T ) =
1

2
r2 sin θ. (5.7)

���������
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h

b

Figure 5.1.3: Triangle T of base of length b and height h
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Figure 5.1.4: Inscribed Octagon
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Figure 5.1.5: Octagon Divided into Eight Congruent Triangles
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Figure 5.1.6: Isosceles Triangle T
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We will now use the formula in (5.7) and (5.2) to compute the area of a regular
octagon inscribed in a circle of radius r:

area(R) = 4r2 sin θ, (5.8)

where θ is given in (5.3). We then have from (5.3) and (5.8) that

area(R) = 4r2
√
2

2
= 2

√
2 r2.

�

We will be using the formula in (5.7) derived in Example 5.1.2 one more
time in these notes. The formula gives the area of an isosceles triangle with
equal sides of length r and angle θ between them in terms of r and the sine of
θ.

Ideally, we would like to compute the area of bounded regions in the plane
whose boundaries are not necessarily polygons; for instance, the area of the
elliptical region pictured in Figure 5.1.7. For the case of a region R bounded

Figure 5.1.7: Elliptical Region

by an ellipse as in Figure 5.1.7, division into triangular regions is not possible
because there are no straight segments on the boundary. However, we can use
the same idea that was used in the solution to the problem in Chapter 2: use
approximations and limits. For instance, we can approximate the area of the
region by the area of inscribed polygons (since we already know how to compute
those areas) and then consider the process of refining the approximations by
using polygons with large numbers of sides with lengths that are very small.
The idea here is that, in the limit as the number of sides goes to infinity, the
boundary of the polygon will approach the boundary of the region. We will
illustrate the use of this idea, which is at the core of the Integral Calculus, by
computing the area of the region enclosed by the circle of radius r and centered
at the origin shown in Figure 5.1.8.

Example 5.1.3. Compute the area of the circle of radius r shown in Figure
5.1.8.



48 CHAPTER 5. INTEGRAL CALCULUS

Figure 5.1.8: Circle of Radius r centered at the origin

Solution: Inscribe a regular polygon of n sides in the circular region in Figure
5.1.8 as shown in Figure 5.1.9. (Note: Figure 5.1.9 depicts the case n = 8).
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Figure 5.1.9: Circle of Radius r with inscribed regular n–gon

Denote the region bounded by the inscribed n–gon by Pn and by T any of
the triangular regions making up Pn in Figure 5.1.9. Then,

area(Pn) = n · area(T ), (5.9)

where, according to the formula in (5.7),

area(T ) =
1

2
r2 sin θ, where θ =

2π

n
. (5.10)

We then obtain from (5.9) and (5.10) that

area(Pn) =
n

2
r2 sin

(
2π

n

)
,
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which can be re–written as

area(Pn) = πr2
n

2π
sin

(
2π

n

)
, for n = 3, 4, 5, . . . (5.11)

Set

tn =
2π

n
, for n = 1, 2, 3, . . . (5.12)

Then, (5.12) defines a sequence (tn) that converges to 0; that is

lim
n→∞ tn = 0. (5.13)

Using (5.12) we can re–write (5.11) as

area(Pn) = πr2
sin(tn)

tn
, for n = 3, 4, 5, . . . (5.14)

Recalling that

lim
t→0

sin(t)

t
= 1,

(see (3.37) in Example 3.2.14), we obtain from (5.14), (5.13) and Theorem 4.2.12
on page 39 in these notes that

lim
n→∞ area(Pn) = πr2 lim

n→∞
sin(tn)

tn
= πr2 · (1) = πr2, (5.15)

which gives a formula for computing the area of a region enclosed by a circle of
radius r. �

Example 5.1.3 illustrates two fundamental notions in the Integral Calculus.
First, there is the notion of approximating a quantity by a sum of parts of
the whole we are trying to compute (in this case, areas of component triangles
that comprise the region whose area we are trying to compute). Secondly,
there is a limiting process that takes place as the number of component pieces
increases to infinity as the dimensions associated with the component parts tend
to 0 (in Example 5.1.3, the angles, tn, associated with each triangle making up
the approximating polygon tend to 0 as the number of sided of the polygon
increases to infinity). In subsequent sections we will see how these two notions
of approximating sums and limiting processes can be used to compute areas of
regions in the plane bounded by graphs of piece–wise continuous functions.

5.2 The Area Function

Continuing with the theme of computing areas of plane regions, in this section we
consider the case regions in the ty–plane bounded by the graph of a piecewise
continuous function, f , the t–axis, and a pair of vertical lines. Figure 5.2.10
illustrates the situation for a nonnegative, piecewise continuous function. We
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t

y

t = a t = x

Af (a;x)

Figure 5.2.10: Af (a;x)

are interested in computing the area of the region in the ty–plane that lies below
the graph of y = f(t), above the t–axis and between the vertical lines t = a and
t = x, where we are assuming that a < x. We will denote the area of that region
by Af (a;x). We imagine that we can compute Af (a;x) for various values of x
as x moves along the t–axis. We therefore obtain a function of x, which we shall
call the area function of f from a to x. We begin with the simplest example:
the constant function f(t) = c, for all t ∈ R, where c > 0.

Example 5.2.1. Let f(t) = c for all t, where c > 0. Let a denote a point on
the t–axis as depicted in Figure 5.2.11. Compute Af (a;x) for x > a.

t

y

t = a t = x

Af (a;x)

Figure 5.2.11: Af (a;x) for a positive constant function

Solution: In this case the region under consideration is a rectangle of dimen-
sions x− a and c, since c > 0 and x > a. We then have that

Af (a;x) = c(x− a), for all x � a. (5.16)

We notice that the graph of Af (a;x) as a function of x is a line that goes through
the point in (a, 0) and has slope c as shown in Figure 5.2.12. �
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x

y

a
������������

Figure 5.2.12: Sketch of graph of y = Af (a;x)

Definition 5.2.2 (Sign Convention 1). For the case in which f is nonnegative
over an interval containing a and x, and x lies to the left of x, we agree to say
that Af (a;x) is the negative of the area of the region that lies below the graph
of y = f(t), above the t–axis and between the vertical lines t = x and t = a.

Example 5.2.3. Let f(t) = c for all t, where c > 0. Compute Af (a;x) for the
case x < a.
Solution: Figure 5.2.13 depicts the situation in this case. According to the

t

y

t = at = x

Figure 5.2.13: Af (a;x) for a positive constant function and x < a

sign convention in Definition 5.2.2, Af (a;x) is the negative of the area of the
rectangle with base [x, a] and height c. The area of the rectangle shown in
Figure 5.2.13 is

(a− x)c,

so that
Af (a;x) = −(a− x)c,

or
Af (a;x) = c(x− a), for all x < a. (5.17)

�
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Note that the formulas in (5.16) and (5.17) are the same. It then follows
that, if f is the constant function c, with c � 0,

Af (a;x) = c(x − a), for x ∈ R. (5.18)

The graph of the area function given in (5.18) is shown in Figure 5.2.14, a
straight line through the point (a, 0) with slope c.

x

y

a
������������

������

Figure 5.2.14: Sketch of graph of y = Af (a;x)

Next, see what Af (a;x) is for a piecewise continuous function f whose graph
lies below the t–axis. An example would be a constant function f(t) = c, for
all t, where c < 0. A sketch of the graph of this function may be seen in Figure
5.2.15. In order to compute the area function for a function that can be negative

t

y

y = c

Figure 5.2.15: Graph of y = c for c < 0

on parts of its domain, we need a second sign convention:

Definition 5.2.4 (Sign Convention 2). For the case in which f is negative over
an interval containing a and x, and x lies to the right of x, we agree to say
that Af (a;x) is the negative of the area of the region that lies below the t–axis,
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above graph of y = f(t), and between the vertical lines t = x and t = a. If x is
to the left of a, Af (a;x) is simply the value of the area of that region.

Example 5.2.5. Let f(t) = c for all t, where c < 0. Compute Af (a;x) for all
values of x.
Solution: First, consider the case x � a. Referring to the sketch in Figure
5.2.16, note that the regionR in the figure lies below the t–axis. Thus, according

t

y

y = c

a x

R

Figure 5.2.16: Af (a;x) for x � a

to the Sign Convention 2 (see Definition 5.2.4),

Af (a;x) = −area(R), (5.19)

where R is a rectangle of dimensions x− a and 0− c; so that

area(R) = −c(x− a). (5.20)

Combining (5.19) and (5.20) we see that

Af (a;x) = c(x− a), for x � a. (5.21)

For the case x < a, refer to Figure 5.2.17. In this case we can apply Sign
Conventions 1 and 2 to obtain that

Af (a;x) = −(−area(R)) = area(R), (5.22)

where R is a rectangle of dimensions a− x and 0− c; so that

area(R) = −c(a− x) = c(x− a). (5.23)

Combining (5.22) and (5.23) we see that

Af (a;x) = c(x− a), for all x < a. (5.24)

Thus, in view of (5.21) and (5.24), we conclude that

Af (a;x) = c(x− a), for x ∈ R, (5.25)

which is the same formula in (5.18) obtained for the case c � 0.
The graph of the area function in (5.25) is a straight line through (a, 0) and

negative slope, c (see Figure 5.2.18). �
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Figure 5.2.17: Af (a;x) for x < a
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Figure 5.2.18: Sketch of graph of y = c(x− a) for c < 0

In the previous examples we have derived the following fact about the area
function for a constant function:

Theorem 5.2.6 (Area Function Fact 1). Let f(t) = c for all t, where c is any
real number. Then, for any real number a,

Af (a;x) = c(x − a), for x ∈ R. (5.26)

Note that the formula in (5.26) can also be written as

Ac(a;x) = cx− ca for x ∈ R. (5.27)

Example 5.2.7. Let f(t) =

{
−1, for t < 0;

1, for t � 0.

Compute Af (0;x) for all values of x.

Solution: Figure 5.2.19 shows a sketch of the graph of f . The figure also shows
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Figure 5.2.19: Sketch of the graph of y = f(t)

the line t = x for x > 0, and the region R below the graph of f above the t–axis,
and between the lines t = 0 and t = x. In this case, Af (0;x) is just the area of
R; so that,

Af (0;x) = area(R),

where R is a rectangle with dimensions x and 1. Thus,

Af (0;x) = x, for x � 0. (5.28)

For the case in which x < 0, the region R lies below the t–axis, as shown in
Figure 5.2.20. Also, the dimensions of the rectangle R are 0 − x and 0 − (−1),

t

y

t = x

R

Figure 5.2.20: Sketch of the graph of y = f(t)

so that

area(R) = −x.

Thus, using the sign conventions, we get that

Af (0;x) = −(−area(R)) = area(R) = −x, for x < 0. (5.29)
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Combining (5.28) and (5.29) we get that the area function for f from 0 to x is

Af (0;x) =

{
−x, for x < 0;

x, for x � 0,

or
Af (0;x) = |x|, for all x ∈ R. (5.30)

The graph the area function in (5.30) is shown in Figure 5.2.21. �
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Figure 5.2.21: Sketch of graph of y = |x|

Example 5.2.8. Let f(t) = t for all t ∈ R. Compute Af (a;x) for any a and
any x in R.
Solution: We begin with the case a > 0. For x � a, Af (a;x) is the area of the
trapezoidal region R shown in Figure 5.2.22. The area of R can be obtained
by subtracting the area of the triangle with vertices (0, 0), (a, 0) and P from
that of the triangle with vertices (0, 0), (x, 0) and Q. Note the P has Cartesian
coordinates (a, a) and Q has Cartesian coordinates (x, x)). We then get

Af (a;x) =
1

2
x2 − 1

2
a2, for x � a. (5.31)

For the case 0 � x < a, refer to the sketch in Figure 5.2.23. According to the
Sign Convention 1, Af (A;x) is the negative of the area of the trapezoidal region
R in Figure 5.2.23. The area of the region R in the figure can be obtained
by subtracting the area of the triangle with vertices (0, 0), (x, 0) and Q from
that of the triangle with vertices (0, 0), (a, 0) and P . Note the P has Cartesian
coordinates (a, a) and Q has Cartesian coordinates (x, x)). We then get

area(R) =
1

2
a2 − 1

2
x2. (5.32)
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Figure 5.2.22: Sketch of graph of y = t

It then follows from (5.32) that

Af (a;x) = −area(R) =
1

2
x2 − 1

2
a2, for 0 � x < a, (5.33)

which is the same formula obtained in (5.2.25) for the case x � a.
Next, consider the case x < 0. According the Sign Conventions 1 and 2,

Af (a;x) = −area(R1) + area(R2), (5.34)

where R1 and R2 denote the two triangular regions shown in Figure 5.2.24.
Given that, in Figure 5.2.24, P has Cartesian coordinates (a, a) and Q has
Cartesian coordinates (x, x), it follows that

area(R1) =
1

2
a2 (5.35)

and

area(R2) =
1

2
(−x)(−x) =

1

2
x2. (5.36)

Combining (5.34), (5.35) and (5.36) we obtain

Af (a;x) =
1

2
x2 − 1

2
a2, for x < 0, (5.37)

which is the same formula obtained in (5.31) and (5.33) for the other two cases.
We therefore conclude, in view of (5.31), (5.33) and (5.37), that

Af (a;x) =
1

2
x2 − 1

2
a2, for x ∈ R, (5.38)
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Figure 5.2.23: Calculation of Af (A;x) for 0 � x < a

in the case a � 0.
For the case a < 0, note that

Af (a; 0) = −Af (0,−a), (5.39)

(see Figure 5.2.25). The triangular regions in Figure 5.2.25 have the same area.
However, by the Sign Convention 2, Af (a; 0) is −area(R2), which implies (5.39),
since Af (0;−a) is area(R1).

Now, we can write

Af (a;x) = Af (a; 0) +Af (0, x), for any x ∈ R (5.40)

(see Problem 1 in Assignment 8). It follows from (5.38) that

Af (0, x) =
1

2
x2, for any x ∈ R. (5.41)

From (5.39) we obtain that

Af (a, 0) = −1

2
a2. (5.42)

Finally, combining (5.40), (5.41) and (5.42), we get

Af (a;x) =
1

2
x2 − 1

2
a2, for x ∈ R, (5.43)

in the case a < 0 as well. �

We shall state the result in Example 5.2.10 as our second Area Function
fact:
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Figure 5.2.24: Calculation of Af (A;x) for x < 0

Theorem 5.2.9 (Area Function Fact 2). Let f(t) = t for all t ∈ R. Then, for
any real number a,

Af (a;x) =
1

2
x2 − 1

2
a2, for x ∈ R. (5.44)

We will also write the formula in (5.44) as

At(a;x) =
1

2
x2 − 1

2
a2, for x ∈ R and all a ∈ R. (5.45)

In the previous examples we have been able to compute Af (a;x) by express-
ing the region under consideration in terms of triangles or rectangles, computing
the areas of the components by well known geometric facts, and then adding
up the areas of the components. This procedure only works when the bound-
ary of the region is a polygon. If any portion of the boundary of the region is
curved (that is, not a straight line segment), the procedure used in Examples
5.2.1 through 5.2.1 no longer works. For example, suppose that f(t) = t2 for
all t ∈ R and we wish to compute Af (a;x), where a is some positive number
and x > a (see Figure 5.2.26). In this case, Af (a;x) = area(R), where R is the
region shown in Figure 5.2.26 that lies above the t–axis and below the portion
of the parabola with equation y = t2 between the vertical lines t = a and t = x.
Since the top portion of the boundary of R is not a polygonal curve, we cannot
use the decomposition into triangles or rectangles to compute the area of R.
We can, however, approximate the area of R by the area of a region bounded
by a polygonal curve that can be computed by means of elementary formulas
from plane geometry. One example of such an approximating polygonal region
is shown in Figure 5.2.27.
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Figure 5.2.25: Af (a; 0) = −Af (0,−a) for a < 0

Example 5.2.10. Let f(t) = t2 for all t ∈ R. Compute Af (a;x) for any a and
any x in R.

Solution: To solve the problem posed in this example, we use the ideas imple-
mented in the calculation of the area of a circular region of radius r discussed
in Example 5.1.3. This time, however, we use a circumscribed polygon, Pn,
pictured in Figure 5.2.27. The polygonal region in Figure 5.2.27 is made up of
n congruent rectangles obtained as follows: Define a subdivision of the interval
[a, x],

[to, t1], [t1, t2], . . . , [tn−2, tn−1], [tn−1, tn], with to = a and tn = x, (5.46)

by

to = a and tk = a+ kh, for k = 1, 2, 3, . . . , n, (5.47)

where

h =
x− a

n
(5.48)

is the length of the base of each sub–rectangle.

The height of the kth rectangle making up Pn, namely the rectangle with
base [tk−1, tk], is taken to be f(tk), the value of the function f at the right–hand
end–point of the interval [tk−1, tk] (see Figure 5.2.27). It then follows that

area(Pn) =

n∑
k=1

f(tk)h, for each n � 2. (5.49)

Using the definition of tk in (5.47) and the formula f(t) = t2, for all t ∈ R, we



5.2. THE AREA FUNCTION 61

t

y

a x

R

Figure 5.2.26: Sketch of graph of y = t2

t

y

a x

R

Figure 5.2.27: Polygonal approximation to area(R)

get that
f(tk)h = h(a+ kh)2

= h[a2 + 2ahk + h2k2]

= ha2 + 2ah2k + h3k2,

(5.50)

for k = 1, 2, 3, . . . , n.
Substituting the results of the calculations in (5.50) into (5.49) yields

area(Pn) =

n∑
k=1

[ha2 + 2ah2k + h3k2], for each n � 2. (5.51)

Using the associative and distributive properties for real numbers arithmetic,
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we can re–write (5.51) as

area(Pn) = nha2 + 2ah2
n∑

k=1

k + h3
n∑

k=1

k2, for n � 1. (5.52)

The sums on the right–hand side of (5.52) can be evaluated as follows:

n∑
k=1

k =
n(n+ 1)

2
(5.53)

(see Problem 4 in Assignment #1), and

n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6
(5.54)

(see Problem 5 in Assignment #1).
Substituting the sums in (5.53) and (5.54) into the right–hand side of (5.52),

and using the definition of h in (5.48), we obtain from (5.52) that

area(Pn) = (x− a)a2 + a(x− a)2
n+ 1

n
+

1

6
(x− a)3

(n+ 1)(2n+ 1)

n2
, (5.55)

for n � 1.
Next, we see what happens as the number of rectangles making up Pn in-

creases; that is as n increases. In view of (5.48), we note that as the number of
rectangles increase, the length of their bases decreases; in fact, it follows from
(5.48) that

lim
n→∞h = lim

n→∞
x− a

n
= 0.

In order to see what the sequence of approximating areas, (area(Pn)), is
doing as n → ∞, we need to evaluate the limits

lim
n→∞

n+ 1

n
= lim

n→∞

(
1 +

1

n

)
= 1, (5.56)

and

lim
n→∞

(n+ 1)(2n+ 1)

n2
= lim

n→∞

(
1 +

1

n

)
lim

n→∞

(
2 +

1

n

)
= 1 · 2 = 2. (5.57)

The fact that the limits in (5.56) and (5.57) exist implies that the sequence of
approximations, (area(Pn)), to area(R) converges to a limit that can be com-
puted by taking the limit as n tends to infinity on both sides of (5.55) and using
the results of the calculations in (5.56) and (5.57):

lim
n→∞ area(Pn) = (x− a)a2 + a(x− a)2 +

1

3
(x− a)3. (5.58)
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The expression on the right–hand side of (5.58) can be simplified by means of
the binomial expansions

(x− a)2 = x2 − 2ax+ a2 (5.59)

and
(x− a)3 = x3 − 3ax2 + 3a2x− a3. (5.60)

Substituting the expansions in (5.59) and (5.60) into the right–hand side of
(5.58) and simplifying then yields

lim
n→∞ area(Pn) =

1

3
x3 − 1

3
a3. (5.61)

The fact that the limit in (5.61) exists and is given by the expression on the
right–hand side of (5.61) suggests that

Af (x; a) =
1

3
x3 − 1

3
a3, for x � a, (5.62)

and a > 0. This statement will be made more precise by the use of the Riemann
integral in the next section.

For the case in which 0 � x < a, the calculations leading to (5.62) can be
used to get that

Af (x; a) =
1

3
a3 − 1

3
x3, for 0 � x < a. (5.63)

(Notice that the order of a and x has been switched). Observe that, by virtue
of the Sign Convention 1, we can write

Af (a;x) = −Af (x; a), for x < a. (5.64)

Combining (5.63) and (5.64) then yields

Af (a;x) =
1

3
x3 − 1

3
a3, for 0 � x < a, (5.65)

which is the same formula for Af (a;x) in (5.62) for the case x � a.
Next, consider the case x < 0. Referring to the sketch in Figure 5.2.28, we

see that
Af (a;x) = Af (a; 0) +Af (0;x) (5.66)

(see also Problem 1(b) in Assignment #8). Using the Sign Convention 1 we
have that

Af (a; 0) = −Af (0; a). (5.67)

Also, by the symmetry of the graph of y = t2 with respect to the y-axis and the
Sign Convention 1, we can write

Af (0;x) = −Af (0;−x). (5.68)
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Figure 5.2.28: Calculation of Af (a;x) for x < 0

Then, since a > 0 and −x > 0, we can use the formula in (5.62) to get from
(5.67) and (5.68) that

Af (a; 0) = −1

3
a3, (5.69)

and

Af (0;x) = −1

3
(−x)3 =

1

3
x3. (5.70)

since (−x)3 = −x3.
Combining (5.66), (5.66) and (5.66), we get that

Af (a;x) = −1

3
a3 +

1

3
x3 =

1

3
x3 − 1

3
a3, for x < 0, (5.71)

which is the same formula as that in (5.62) and (5.65) for the other two cases.
In view of (5.62), (5.65) and (5.71) we can write that

Af (a;x) =
1

3
x3 − 1

3
a3, for all x ∈ R, and a � 0. (5.72)

It remains to see that the formula in (5.72) also works for a < 0.
If a < 0, use the symmetry of the graph of y = t2 with respect to the y–axis

and the Sign Convention 1 to write

Af (0; a) = −Af (0;−a). (5.73)

(see also (5.67)). Thus, since −a > 0, we can use the formula in (5.72) to obtain
from (5.73) that

Af (0; a) = −1

3
(−a)3 =

1

3
a3. (5.74)

Use the result in Problem 1(b) in Assignment #8 to write

Af (a;x) = Af (a; 0) +Af (0;x). (5.75)
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By the Sign Convention 1 we can write

Af (a; 0) = −Af (0; a) = −1

3
a3, (5.76)

where we have also used the result in (5.74). Next, use the result in (5.72) to
get that

Af (0;x) =
1

3
x3. (5.77)

Substitute the results in (5.76) and (5.77) into the right–hand side of (5.75) to
conclude that

Af (a;x) =
1

3
x3 − 1

3
a3, for all x ∈ R, and a < 0. (5.78)

Putting together the results in (5.72) and (5.78), we get that

Af (a;x) =
1

3
x3 − 1

3
a3, for x ∈ R, and a ∈ R. (5.79)

�

As we did after the previous two examples, we will list the result of Example
5.2.10 in (5.79) as an Area Function Fact for future reference.

Theorem 5.2.11 (Area Function Fact 3). Let f(t) = t2 for all t ∈ R. Then,
for any real number a,

Af (a;x) =
1

3
x3 − 1

3
a3, for x ∈ R. (5.80)

We will also write the formula in (5.80) as

At2(a;x) =
1

3
x3 − 1

3
a3, for x ∈ R and all a ∈ R. (5.81)

5.3 The Area Function as a Riemann Integral

The procedure outlined in Examples 5.1.3 and 5.2.10 is rather general. In this
section we apply it to the case in which we wish to compute Af (a;x), where f
is any piece–wise continuous function on an interval I that contains a. There
were two notions that were used in the solutions of the problems in Examples
5.1.3 and 5.2.10. First, there was the notion of approximating the area of the
region, R, under consideration by the area of polygonal regions, Pn, which could
be calculated by elementary means. Secondly, there was the limiting process

lim
n→∞ area(Pn),

which took place as the areas of the n components making up Pn tended to 0
as n tended to infinity.



66 CHAPTER 5. INTEGRAL CALCULUS

t

y

t = a t = x

Af (a;x)

Figure 5.3.29: Graph of piecewise continuous fucntion

For the case of a the region under a piecewise continuous function f , as
that pictured in Figure 5.3.29, it is convenient to approximate the signed are
Af (a;x) by the signed area of approximated polygons made up of n rectangles
whose bases are the subdivisions

[to, t1], [t1, t2], . . . , [tn−2, tn−1], [tn−1, tn], with to = a and tn = x, (5.82)

of the interval [a, x], assuming that a < x. In general, the heights of the com-
ponent rectangles are f(τk), for k = 1, 2, 3, . . . , n, where τk is any point in the
subinterval [tk−1, tk]. Thus, the ares of the approximating polygons are given
by

n∑
k=1

f(τk)(tk − tk−1), for n = 1, 2, 3, . . . (5.83)

The expressions in (5.83) are known as Riemann sums of the function f over
the interval [a, x]. If we choose the subdivisions in (5.82) in such a way that the
largest of the lengths of the subintervals tends to 0 as n tends to infinity, it is
reasonable to assume that

lim
n→∞

n∑
k=1

f(τk)(tk − tk−1), (5.84)

provided that it exists, will yield the value of Af (a;x). The existence of the
limiting value in (5.84) for a piecewise continuous function on the closed and
bounded interval [a, x] is a very important fact from analysis. The text for this
course refers to it as the Fundamental Theorem of the Integral Calculus. In
order to avoid confusion with the Fundamental Theorem of Calculus, which will
be discussed later in these notes, we shall simply refer to it as the Existence of
the Area Function Theorem.

Theorem 5.3.1 (Existence of the Area Function). Let f denote a piecewise
continuous function defined on an interval containing a point a. Then, for any
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x in that interval, Af (a : x) exists. Furthermore, for the case x > a,

Af (a;x) = lim
n→∞

n∑
k=1

f(τk)(tk − tk−1), (5.85)

where

[to, t1], [t1, t2], . . . , [tn−2, tn−1], [tn−1, tn], with to = a and tn = x, (5.86)

is any subdivision of the interval [a, x] with the property that the largest length
of the intervals in (5.86) tends to 0 as n tends to infinity, and τk is any point in
the subinterval [tk−1, tk].

Definition 5.3.2 (Riemann Integral Notation). The limit on the right–hand
side of (5.85), when it exists, is called the Riemann integral of f over the interval

[a, x], and it is usually denoted by the symbols

∫ x

a

f(t) dt. We then have that

Af (a;x) =

∫ x

a

f(t) dt. (5.87)

Example 5.3.3. Using the notation in (5.87) introduced in Definition 5.3.2,
the results in the Area Function Facts 1, 2 and 3 can be written as follows

∫ x

a

c dt = cx− ca, where c is constant; (5.88)

∫ x

a

t dt =
1

2
x2 − 1

2
a2; and (5.89)

∫ x

a

t2 dt =
1

3
x3 − 1

2
a3, (5.90)

for any a and x in R.

Observe that the equations in (5.88), (5.89) and (5.88) are of the form∫ x

a

f(t) dt = F (x) − F (a), (5.91)

for some function, F . In (5.88) we have

F (x) = cx, for x ∈ R,

in in the other two cases,

F (x) =
1

2
x2, for x ∈ R

and

F (x) =
1

3
x3, for x ∈ R,

respectively (see (5.89) and (5.90), respectively). A function F satisfying (5.91)
is said to be a primitive integral of f , or simply a primitive of f .
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Definition 5.3.4 (Primitive Integral). Given a piecewise continuous function,
f , defined on some interval I, a primitive integral of f is a function, F , satisfying∫ x

a

f(t) dt = F (x) − F (a), for all a, x ∈ I. (5.92)

Example 5.3.5. Let f be a piecewise continuous function defined on an interval
I; then, given any c in I, the area function, Af (c;x), is a primitive integral of
f . This follows from the identity∫ x

a

f(t) dt = Af (c;x)−Af (c; a);

see Problem 2 in Assignment #8.

Suppose that F1 and F2 are two primitive integrals of f over the interval I.
Then, by (5.92) in Definition 5.3.4,∫ x

a

f(t) dt = F1(x) − F1(a), for all a, x ∈ I, (5.93)

and ∫ x

a

f(t) dt = F2(x) − F2(a), for all a, x ∈ I. (5.94)

Comparing (5.93) and (5.94) we see that

F2(x) = F1(x) + F2(a)− F1(a), for all x ∈ I. (5.95)

Setting C = F2(a)− F1(a) we obtain from (5.95) that

F2(x) = F1(x) + C, for all x ∈ I.

Thus, any two primitives of f differ by a constant.

Definition 5.3.6 (Indefinite Integral). Let f be a piecewise continuous function
defined on some interval I, and F be a primitive integral of f . The indefinite
integral of f , denoted by inf f(x) dx, is defined by∫

f(x) dx = F (x) + C,

where C denotes an arbitrary constant.

Example 5.3.7. We have already derived the following indefinite integrals:∫
k dx = kx+ C, where k is a constant;

∫
x dx =

1

2
x2 + C;

∫
x2 dx =

1

3
x3 + C.
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The last two indefinite integrals in Example 5.3.7 suggest that∫
xm dx =

1

m+ 1
xm+1 + C, for m = 1, 2, 3, . . . (5.96)

The integration formula in (5.96) will be derived in Appendix D.

Definition 5.3.8 (Definite Integral). Let f be a piecewise continuous function

defined on some interval I containing a and b. The Riemann integral

∫ b

a

f(t) dt

is also called the definite integral of f from a to b.

If the indefinite integral, or an primitive, of a piecewise continuous function,

f , on an interval I is known, we can evaluate the definite integral

∫ b

a

f(t) dt,

for any a and b in I as follows∫ b

a

f(t) dt = F (b)− F (a), (5.97)

where F is any primitive integral of f in I. The expression in (5.97) is usually
written ∫ b

a

f(t) dt =
[
F (x)

]b
a
, (5.98)

where the meaning of the right–hand side in (5.98) is given by the right–hand
side in (5.97), [

F (x)
]b
a
= F (b)− F (a).

Example 5.3.9. Compute the area under the graph of y = t2, above the t–axis,
and between the vertical lines t = −1 and t = 2.
Solution: The region R in question is shown in Figure 5.3.30. The area of R

is given by

∫ 2

−1

t2 dt, so that

area(R) =

[
1

3
x3

]2
−1

=
1

3
23 − 1

3
(−1)3 =

8

3
+

1

3
= 3,

where we have used the integration formula in (5.96) with m = 2. �

Theorem 5.3.10 (Some Properties of the Rieamnn Integral). Let f and g de-
note piecewise continuous functions defined on an interval containing the points
a and b. Then,

(i)

∫ b

a

cf(t) dt = c

∫ b

a

f(t) dt, for any constant c.

(ii)

∫ b

a

[f(t) + g(t)] dt =

∫ b

a

f(t) dt+

∫ b

a

g(t) dt.
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t

y

−1 2

R

Figure 5.3.30: Region R in Example 5.3.9

The properties in Theorem 5.3.10 can be derived as a consequence of the
definition of the Riemann integral and the limit facts for sequences discussed in
Section 3.1. In the next two examples we present applications of those proper-
ties.

Example 5.3.11. Evaluate the definite integral

∫ 1

−2

(8− 2t2) dt.

Solution: Using property (ii) in Theorem 5.3.10, we get

∫ 1

−2

(8− 2t2) dt =

∫ 1

−2

8 dt+

∫ 1

−2

(−2)t2 dt. (5.99)

The first integral on the right–hand side of (??) can be evaluated using the
integration formula in (5.88) to get

∫ 1

−2

8 dt = 8(1− (−2)) = 24. (5.100)

In order to evaluate the second integral on the right–hand side of (5.99), first
use property (ii) in in Theorem 5.3.10 to get

∫ 1

−2

(−2)t2 dt = −2

∫ 1

−2

t2 dt. (5.101)

Next, use the integration formula in (5.96) with m = 2 to deduce that

F (x) =
1

3
x3
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is a primitive integral on f(t) = t2 over R to get from (5.101) that∫ 1

−2

(−2)t2 dt = −2

[
1

3
x3

]1
−2

= −2

(
1

3
− 1

3
(−2)3

)

= −2

3
(1 + 8)

= −6.

(5.102)

Finally, using the results of the calculations in (5.100) and (5.102), we obtain
from (5.99) that ∫ 1

−2

(8− 2t2) dt = 24− 6 = 18.

�

Theorem 5.3.12 (More Properties of the Rieamnn Integral). Let f denote a
piecewise continuous functions defined on an interval I. Then,

(i)

∫ a

b

f(t) dt = −
∫ b

a

f(t) dt, for any points a and b in I.

(ii)

∫ b

a

f(t) dt =

∫ c

a

f(t) dt+

∫ b

c

g(t) dt, for any points a, b and c in I.

The properties in Theorem 5.3.12 can be derived as a consequence of the

area function interpretation of the Riemann integral

∫ x

a

f(t) dt, for any a and

x in I (see Problem 1 in Assignment #9).

Example 5.3.13. Evaluate the definite integral

∫ 3

1

|t− 2| dt.
Solution: Note that

|t− 2| =
{
2− t, if t < 2;

t− 2, if t � 2.
(5.103)

Thus, we can take advantage of property (ii) in Theorem 5.3.12 to express the

integral

∫ 3

1

|t − 2| dt as a sum of an integral over the interval (1, 2) and an

integral over the interval (2, 3). We then have, in view of (5.103) that∫ 3

1

|t− 2| dt =
∫ 2

1

(2 − t) dt+

∫ 3

2

(t− 2) dt. (5.104)

Next, we evaluate each of the integrals on the right–hand side of (5.104) sepa-
rately.
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Using property (ii) in Theorem 5.3.10 and the integration formulas in (5.88)
and (5.89), we compute∫ 2

1

(2 − t) dt =

[
2x− 1

2
x2

]2
1

=

(
2(2)− 1

2
(2)2

)
−
(
2(1)− 1

2
(1)2

)
,

from which we get that∫ 2

1

(2 − t) dt = (4− 2)−
(
2− 1

2

)
=

1

2
. (5.105)

Similarly,∫ 3

2

(t− 2) dt =

[
1

2
x2 − 2x

]3
2

=

(
1

2
32 − 2(3)

)
−
(
1

2
22 − 2(2)

)
,

from which we get that∫ 3

2

(2− t) dt =

(
9

2
− 6

)
− (2− 4) =

9

2
− 4 =

1

2
. (5.106)

Substituting the results of the calculations in (5.105) and (5.106) into (5.104)
yields ∫ 3

1

|t− 2| dt = 1.

�

Example 5.3.14. In this example we compute the area function Af (a;x) for
f(t) = cos t, for all t ∈ R, where a ∈ R and x > a.

Since cos is continuous on R, the Existence of the Area Function Theorem
(Theorem 5.3.1) implies that

Af (a;x) = lim
n→∞

n∑
k=1

cos(τk)(tk − tk−1), (5.107)

where

[to, t1], [t1, t2], . . . , [tn−2, tn−1], [tn−1, tn], with to = a and tn = x, (5.108)

is any subdivision of the interval [a, x] with the property that the largest length
of the intervals in (5.108) tends to 0 as n tends to infinity, and τk is any point
in the subinterval [tk−1, tk].

We choose the following subdivision of [a, x]:
Set

h =
x− a

n
, (5.109)

where n is chosen so that h < 2π.



5.3. THE AREA FUNCTION AS A RIEMANN INTEGRAL 73

Put

to = a and tk = a+ kh, for k = 1, 2, 3, . . . , n, (5.110)

so that
tn = b.

Observe that the length of each subinterval is

tk − tk−1 = h,

so that
lim
n→∞(tk − tk−1) = 0,

by virtue of (5.109).
Finally, set τk = tk = a + kh, for k = 1, 2, 3, . . . , n. We then have that the

conditions of the Existence of the Area Function are fulfilled and so∫ x

a

cos t dt = lim
n→∞

n∑
k=1

cos(a+ kh) · h. (5.111)

In order to evaluate the limit on the right–hand side of (5.111), we first
evaluate the Riemann sums

n∑
k=1

cos(a+ kh) · h = h

n∑
k=1

cos(a+ kh). (5.112)

Multiply and divide the sum on the right–hand side of (5.112) by 2 sin

(
h

2

)
to get

n∑
k=1

cos(a+ kh) · h =
h

2 sin(h/2)

n∑
k=1

2 cos(a+ kh) sin

(
h

2

)
. (5.113)

Note that we can write

h

2 sin(h/2)
=

h/2

sin(h/2)
; (5.114)

and setting

θ =
h

2
, (5.115)

we see from (5.114) that
h

2 sin(h/2)
=

θ

sin θ
, (5.116)

by virtue of (5.115) and (5.109),

lim
n→∞ θ = 0. (5.117)
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It then follows from (5.117) and (5.116) that

lim
n→∞

h

2 sin(h/2)
= lim

θ→0

θ

sin θ
= 1, (5.118)

where we have used the limit fact in (3.37) established in Example 3.2.14.
In view of (5.118), (5.111), (5.112) and (5.113), in order to compute the limit

in (5.111), it remains to compute the limit

lim
n→∞

n∑
k=1

2 cos(a+ kh) sin

(
h

2

)
. (5.119)

Next, use the trigonometric identity

2 cosα sinβ = sin(α+ β)− sin(α− β),

with α = a+ kh and β = h/2, to re–write the sum in (5.119) as

n∑
k=1

2 cos(a+kh) sin

(
h

2

)
=

n∑
k=1

[
sin

(
a+

(
k +

1

2

)
h

)
− sin

(
a+

(
k − 1

2

)
h

)]
,

which simplifies to

n∑
k=1

2 cos(a+ kh) sin

(
h

2

)
= sin

(
x+

3h

2

)
− sin

(
a+

h

2

)
(5.120)

by virtue of (5.109).
Using (5.109) again, we see that

lim
n→∞h = 0;

hence, it follows from (5.120) that

lim
n→∞

n∑
k=1

2 cos(a+ kh) sin

(
h

2

)
= lim

h→0

[
sin

(
x+

3h

2

)
− sin

(
a+

h

2

)]
,

which yields

lim
n→∞

n∑
k=1

2 cos(a+ kh) sin

(
h

2

)
= sinx− sin a, (5.121)

by the continuity of the sine function.
Finally, combining (5.118) and (5.121), we get from (5.113) that

lim
n→∞

n∑
k=1

cos(a+ kh) · h = sinx− sina. (5.122)

Comparing (5.111) and (5.122) we see that∫ x

a

cos t dt = sinx− sina. (5.123)
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We conclude from the result of Example in (5.123) that F (x) = sinx, for
all x ∈ R, is a primitive integral of f(t) = cos t, for t ∈ R. We also get the
integration formula ∫

cosx dt = sinx+ C. (5.124)

Example 5.3.15. Let f(t) = cos t, for all t ∈ R. Compute the area function
Af (0;x) and sketch the graph of y = Af (0;x)
Solution: Figure 5.3.31 shows a sketch of the graph of y = cos t.

t

y

1x

Figure 5.3.31: Sketch of graph of y = cos t

Using the integration formula in (5.123), with a = 0, we obtain that

Af (0;x) = sinx, for x ∈ $,

since sin(0) = 0.
A sketch of the graph of y = Af (0;x) is shown in Figure 5.3.32. �

x

y

Figure 5.3.32: Sketch of graph of y = sinx

In Examples 5.2.10 and 5.3.14 we chose a special subdivision of the interval
[a, x] in which all the subintervals had the same length,

h =
x− a

n
,
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tending to 0 as n tends to infinity. In the next example we will see that, in some
cases, it is more convenient to choose the subintervals to have different lengths.

Example 5.3.16. Let f(t) =
1

t2
, for t > 0. In this example we compute the

area function Af (1;x), for x > 0.
First, we consider the case x > 1. Figure 5.3.33 shows a sketch of the graph

of f . The figure also shows the region, R, below the graph of f , above the t–axes
and between the vertical lines t = 1 and t = x.

t

y

1 x

R-+

Figure 5.3.33: Sketch of graph of y = 1/t2

We choose a subdivision of [a, x] as follows:
Set

qn = x1/n, for n = 1, 2, 3, . . . (5.125)

and note that, since x is positive,

lim
n→∞ qn = 1. (5.126)

(The limit fact in (5.126) is proved in Appendix B.1).
Put

tk = qkn, for k = 1, 2, 3, . . . , n, (5.127)

so that
to = 1 and tn = x. (5.128)

The length of each subinterval, [tk−1, tk] for k = 1, 2, . . . , n, is given by

tk − tk−1 = qkn − qk−1
n = qk−1

n (qn − 1), for k = 1, 2, 3. . . . , n. (5.129)

It follows from (5.129) and the fact that qn > 1 that

tk − tk−1 � qn−1
n (qn − 1) = x

qn − 1

qn
, for k = 1, 2, 3. . . . , n. (5.130)



5.3. THE AREA FUNCTION AS A RIEMANN INTEGRAL 77

It follows from (5.126) that

lim
n→∞x

qn − 1

qn
= 0;

thus, in view of (5.130), we see that the conditions of the Existence of the Area
Function Theorem are fulfilled.

Next, set τk = tk = qkn, for k = 1, 2, 3, . . . , n. Thus, by Theorem 5.3.1,∫ x

1

1

t2
dt = lim

n→∞

n∑
k=1

1

(qkn)
2
· qk−1

n (qn − 1). (5.131)

In order to evaluate the limit on the right–hand side of (5.131), we first
evaluate the Riemann sums

n∑
k=1

1

(qkn)
2
· qk−1

n (qn − 1) =
qn − 1

qn

n∑
k=1

1

qkn
, for n = 1, 2, 3, . . . . (5.132)

The sum on the right-hand side of (5.132) is a geometric sum of the form
n∑

k=1

rk, whose sum, for r �= 1, is given by

n∑
k=1

rk =
r − rn+1

1− r
. (5.133)

(See Problem 1 in Assignment #11 for a derivation of the formula in (5.133)).

Applying the formula in (5.133) for the case r =
1

qn
, we see that we can

rewrite the sum on the right-hand side of (5.132) as

n∑
k=1

1

qkn
=

1

qn
− 1

qn+1
n

1− 1

qn

,

which simplifies to

n∑
k=1

1

qkn
=

1− 1

x
qn − 1

, (5.134)

where we have used the fact qnn = x, which follows from the definition of qn in
(5.125).

Next, combine (5.132) and (5.134) to get that

n∑
k=1

1

(qkn)
2
· qk−1

n (qn − 1) =
1

qn

(
1− 1

x

)
, for n = 1, 2, 3, . . . . (5.135)
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Using the limit fact in (5.126), we get from (5.135) that

lim
n→∞

n∑
k=1

1

(qkn)
2
· qk−1

n (qn − 1) = 1− 1

x
,

from which we get, in view of (5.131), that∫ x

1

1

t2
dt = − 1

x
+ 1, for x > 1. (5.136)

Next, consider the case 0 < x < 1. In this case, we proceed as in the case
x > 1; however, this time, we first write

Af (1;x) =

∫ x

1

1

t2
dt = −

∫ 1

x

1

t2
dt, (5.137)

an then define

qn =
1

x1/n
, for n = 1, 2, 3, . . . , (5.138)

and
tk = xqkn, for k = 0, 1, 2, . . . , n, (5.139)

so that
t0 = x and tn = 1.

We also have that
lim
n→∞ qn = 1. (5.140)

The intervals
[to, t1], [t1, t2], . . . , [tn−2, tn−1], [tn−1, tn] (5.141)

form a subdivision of [x, 1] with lengths

tk − tk−1 = xqk−1
n (qn − 1), for k = 1, 2, 3, . . . , n. (5.142)

Since qn > 1 for all n, it follows from (5.142) that

tk − tk−1 � xqn−1
n (qn − 1) =

qn − 1

qn
, for k = 1, 2, 3, . . . , n. (5.143)

It follows from (5.140) that

lim
n→∞

qn − 1

qn
= 0;

thus, in view of (5.143), we see that the conditions of the Existence of the Area
Function Theorem are fulfilled in this case as well.

Choosing τk = tk = xqkn, for k = 1, 2, 3, . . . , n this time, we can apply
Theorem 5.3.1 again to obtain∫ 1

x

1

t2
dt = lim

n→∞

n∑
k=1

1

(xqkn)
2
· xqk−1

n (qn − 1). (5.144)
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The sum in the right–hand side of (5.144) can be written as

n∑
k=1

1

(xqkn)
2
· xqk−1

n (qn − 1) =
1

x

qn − 1

qn

n∑
k=1

1

qkn
. (5.145)

Using the geometric sum formula in (5.133) for the case r =
1

qn
, again, we can

rewrite the sum on the right-hand side of (5.145) as

n∑
k=1

1

qkn
=

1

qn
− 1

qn+1
n

1− 1

qn

,

which simplifies to
n∑

k=1

1

qkn
=

1− x

qn − 1
, (5.146)

where we have used the fact qnn =
1

x
, by virtue of (5.139).

Substituting the expression on the right–hand side of (5.146) for the sum in
the right–hand side of (5.145) yields

n∑
k=1

1

(xqkn)
2
· xqk−1

n (qn − 1) =
1

qn

(
1

x
− 1

)
. (5.147)

Next, take the limit as n tends to∞ on both sides of (5.147), while using (5.140),
to obtain from (5.144) that ∫ 1

x

1

t2
dt =

1

x
− 1. (5.148)

Finally, combine(5.137) and (5.148)∫ x

1

1

t2
dt = − 1

x
+ 1, for 0 < x < 1, (5.149)

which is the same formula obtained for the case x > 1 in (5.136).

Noting that

∫ 1

1

1

t2
dt = 0, we observe that the formula in (5.136) and (5.149)

works for all x > 0. We then have∫ x

1

1

t2
dt = − 1

x
+ 1, for x > 0. (5.150)

The formula in (5.150) derived in Example 5.3.16 implies that the function

F (x) = − 1

x
, for x > 0,
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is a primitive integral of the function f(t) =
1

t2
, for t > 0. We also get the

integration formula ∫
1

x2
dx = − 1

x
+ C. (5.151)

Writing the formula in (5.151) as∫
x−2 dx = −x−1 + C,

we see that the integration formula in (5.151) is a special case of the general
formula ∫

xm dx =
1

m+ 1
xm+1 + C, for m �= −1. (5.152)

The integration formula in (5.152) will be derived in Appendix D. In the fol-
lowing example we explore what happens in the case m = −1.

Example 5.3.17. Let f(t) =
1

t
, for t > 0. In this example we compute the

area function Af (1;x), for x > 0.
We will follow the outline of the solution to the problem in Example 5.3.16.

First, we consider the case x > 1. Figure 5.3.34 shows a sketch of the graph of
f . The figure also shows the region, R, below the graph of f , above the t–axes
and between the vertical lines t = 1 and t = x.

t

y

1 x

R

Figure 5.3.34: Sketch of graph of y = 1/t

According to the Existence of the Area Function Theorem (Theorem 5.3.1),

since f(t) =
1

t
is continuous for t > 0, the area of the region R in Figure 5.3.34

is given by ∫ x

1

1

t
dt = lim

n→∞

n∑
k=1

1

τk
(tk − tk−1), (5.153)
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where

[to, t1], [t1, t2], . . . , [tn−2, tn−1], [tn−1, tn], with to = 1 and tn = x, (5.154)

is any subdivision of the interval [1, x] with the property that the largest length
of the intervals in (5.154) tends to 0 as n tends to infinity, and τk is any point
in the subinterval [tk−1, tk].

In particular, we can use the subdivision of [1, x] used in Example 5.3.16;
namely,

tk = qkn, for k = 0, 1, 2, . . . , n, (5.155)

where

qn = x1/n, for k = 1, 2, 3, . . . , (5.156)

so that

lim
n→∞ qn = 1. (5.157)

Then, the lengths of the subintervals in (5.154) are given by

tk − tk−1 = qk−1
n (qn − 1), for k = 1, 2, 3. . . . , n. (5.158)

Now, since qn > 1, it follows from (5.158) that

tk − tk−1 � qn−1
n (qn − 1), for k = 1, 2, 3. . . . , n,

or

tk − tk−1 � x
qn − 1

qn
, for k = 1, 2, 3. . . . , n, (5.159)

where we have used the definition of qn in (5.157).
Now, it follows from (5.157) that the right–hand side of (5.159) tends to 0

as n tends infinity. Consequently, the conditions for the Existence of the Area
Function hold. Thus, taking τk = tk = qkn, for k = 1, 2, 3, . . . , n, we get from
(5.153) that ∫ x

1

1

t
dt = lim

n→∞

n∑
k=1

1

qkn
qk−1
n (qn − 1), (5.160)

where we have used (5.155) and (5.158).
Next, simplify the sum on the right–hand side of (5.160) to get∫ x

1

1

t
dt = lim

n→∞
n(qn − 1)

qn
. (5.161)

The limit on the right–hand side of (5.161) is guaranteed to exist by the Exis-
tence of the Area Function Theorem. Thus, in view of the limit fact in (5.157),
we can write (5.161) as∫ x

1

1

t
dt = lim

n→∞[n(x1/n − 1)], for x > 1. (5.162)
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where we have used the definition of qn in (5.157). Calculations for the case
0 < x < 1 lead to the same formula in (5.162). We then have that∫ x

1

1

t
dt = lim

n→∞[n(x1/n − 1)], for x > 0. (5.163)

The result of Example 5.3.17 in (5.163) shows that the area function, Af (1;x),

for f(t) =
1

t
, for t > 0, is given by the limit of the sequence (n(x1/n − 1));

namely,
lim
n→∞[n(x1/n − 1)], for x > 0. (5.164)

We will denote the limit in (5.164) by ln(x), and call it the natural logarithm
of x. We then have that

ln(x) = lim
n→∞[n(x1/n − 1)], for x > 0, (5.165)

and, by virtue of (5.163),

ln(x) =

∫ x

1

1

t
dt, for x > 0. (5.166)

We will see later in this section why the function ln defined by limit expression
in (5.165), or by the integral in (5.166) is called a logarithm.

We note that the integral formula in (5.166) implies that ln(x), for x > 0,

is a primitive integral of f(t) =
1

t
, for t > 0. We therefore get the integration

formula ∫
1

x
dx = ln(x) + C, for x > 0. (5.167)

Example 5.3.18. Estimate the area of the region below the graph of y =
1

t
,

for t > 0, and above the t–axis from t = 1 to t = 2.
Solution: Figure 5.3.35 shows a sketch of the region, R, under consideration
in this problem. The area of R is given by

area(R) =

∫ 2

1

1

t
dt.

Thus, according to (5.166),

area(R) = ln(2). (5.168)

In order to estimate the value of ln(2) in (5.168), we can use (5.165) to write

ln(2) = lim
n→∞[n(21/n − 1)]. (5.169)

Table 5.1 shows the values n(21/n − 1) where n is a power of 10 up to 108.
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t

y

1 2

R

Figure 5.3.35: Sketch of graph of y = 1/t

n n(21/n − 1)
1 1.0000000000
10 0.717734625
100 0.695555006
1000 0.693387463
104 0.693171204
105 0.693149583
106 0.693147421
107 0.693147204
108 0.693147184

Table 5.1: Values of n(21/n − 1) for powers of 10

Examination of the last values in the second column of the table shows that an
estimate for ln(2), to four decimal places, is 0.6931. In view of (5.168), we then
have that

area(R) =̇ 0.6931, (5.170)

where the dot on top of the equal sign in (5.170) indicates that the value on the
right–hand side is not a exact value for the left–hand side, but an estimate. �

Theorem 5.3.19 (Properties of ln). Let ln(x) =

∫ x

1

1

t
dt, for x > 0.

(i) For any positive numbers a and b,

ln(ab) = ln(a) + ln(b) (5.171)

(ii) For any positive number, a, and any natural number, n,

ln(an) = n · ln(a). (5.172)
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To see why (5.171) is true for the case in which a > 1 and b > 1, observe
that

1 < a < ab,

so that ∫ ab

1

1

t
dt =

∫ a

1

1

t
dt+

∫ ab

a

1

t
dt,

from which we get

ln(ab) = ln(a) +

∫ ab

a

1

t
dt. (5.173)

Next, we use the Existence of the Area Function Theorem to evaluate the right–
most integral in (5.173) as follows:

Set

qn = b1/n, for k = 1, 2, 3, . . . , (5.174)

and

tk = aqkn, for k = 0, 1, 2, . . . , n. (5.175)

We then have that

lim
n→∞ qn = 1, (5.176)

and

tk − tk−1 = aqk−1
n (qn − 1), for k = 0, 1, 2, . . . , n. (5.177)

Since qn > 1 for all n, it follows from (5.177) that

tk − tk−1 � aqn−1
n (qn − 1), for k = 0, 1, 2, . . . , n,

from which we get that

tk − tk−1 � b · qn − 1

qn
, for k = 0, 1, 2, . . . , n, (5.178)

by virtue of (5.174).
Note that, as a consequence of (5.176),

lim
n→∞ b · qn − 1

qn
= 0;

Thus, in view of (5.178), the largest of the lengths of the subintervals

[to, t1], [t1, t2], . . . , [tn−2, tn−1], [tn−1, tn]

tends to 0 as n tends to infinity. Hence, taking τk = aqkn, for k = 1, 2, . . . , n, we
get by applying Theorem 5.3.1 that∫ ab

a

1

t
dt = lim

n→∞

n∑
k=1

1

aqkn
aqk−1

n (qn − 1). (5.179)
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Simplifying the sum on the right–hand side of (5.179) we obtain

n∑
k=1

1

aqkn
aqk−1

n (qn − 1) =
n∑

k=1

qn − 1

qn
= n

qn − 1

qn
. (5.180)

Thus, using (5.174) and (5.176), we obtain from (5.180) that

lim
n→∞

n∑
k=1

1

aqkn
aqk−1

n (qn − 1) = lim
n→∞[n(b1/n − 1)]. (5.181)

Combining (5.179) and (5.181) we get that∫ ab

a

1

t
dt = lim

n→∞[n(b1/n − 1)],

which, in view of the definition of ln in (5.165), implies that∫ ab

a

1

t
dt = ln(b). (5.182)

Combining (5.173) and (5.182) yields (5.171).

In order to establish (5.172), we may proceed by induction on n. First, note
that the result is true for n = 1 because

ln(a1) = ln(a) = 1 · ln(a).
Next, we show that if the result is true for n, then it must also be true for n+1.
Thus, assume the result is true for n; that is, assume that

ln(an) = n · ln(a), (5.183)

and note that an+1 = a · an. Then, using (5.171),

ln(an+1) = ln(a) + ln(an). (5.184)

Thus, by virtue of (5.183), we obtain from (5.184) that

ln(an+1) = ln(a) + n ln(a) = (n+ 1) ln(a),

which shows that the result in (5.172) is true for n+ 1.

5.4 Interpretations of the Riemann Integral

We have already seen that the Riemann integral can be used to define the area
function for a piecewise continuous function. In this section we present other
interpretations of the integral that come up in applications. We begin with the
interpretation that we alluded to in the introductory example to these notes:
recovering a function from its rate of change.
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5.4.1 Recovering a Function from its Rate of Change

In Chapter 2 we alluded to the fact that, if v(t) denotes the speed of an object
at time t, and if v is assumed to be a continuous function of t, then the distance
traveled by the object over the time interval [to, t] is given by

s(t) =

∫ t

to

v(τ) dτ, for t � to. (5.185)

We can arrive at (5.185) by first considering a subdivision of the time interval
[to, t],

[to, t1], [t1, t2], . . . , [tn−2, tn−1], [tn−1, tn], (5.186)

where the times tk are given by

tk = to + kh, for k = 0, 1, 3, . . . , n, (5.187)

n is a positive integer, and h is the length, tk − tk−1, of each of the subintervals
in (5.186); that is,

h =
t− to
n

. (5.188)

Note that it follows from (5.187) and (5.188) that tn = t.
If n is very large, then, according to (5.188), the interval [tk−1, tk] is very

small, so that, by virtue of the continuity of v, we may approximate the speed,
v(t), for any t ∈ [tk−1, tk], by a constant value v(τk), where τk can be taken to
be any time in the interval [tk−1, tk]. We then have that the distance traveled by
the object over the interval [tk−1, tk] can be approximated by v(τk)(tk − tk−1);
that is,

s(tk)− s(tk−1) ≈ v(τk)(tk − tk−1). (5.189)

The terms on the left–hand side of (5.189) add up to s(t), since s(tn) = s(t)
and s(to) = 0. Thus, an estimate for s(t), the distance traveled by the vehicle
over the interval [0, t], can then be estimated by

s(t) ≈
n∑

k=1

v(τk)(tk − tk−1), (5.190)

By virtue of the continuity of v, the approximations to s(t) on the right–hand
side of (5.190) get closer to s(t) as n gets larger and larger. Thus, taking the
limit as n → ∞ on the right–hand side of (5.190) and applying Theorem 5.3.1,
we obtain

s(t) =

∫ t

to

v(τ) dτ. (5.191)

The integral on the right–hand side of (5.191) is guaranteed to exist by Theorem
5.3.1. Thus, in order to determine the distance traveled by an object moving at
a continuous speed, v, it suffice to integrate the function v.
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Example 5.4.1. Assume that v(t) = at, for all t, where a is a positive constant
of proportionality that has units of miles/hr2. Then, according to the formula
in (5.191), the distance traveled by the object over the time interval [to, t] is
given by

s(t) =

∫ t

to

aτ dτ,

which we can compute using the property (i) in Theorem 5.3.10 and the inte-
gration fact in (5.96) to obtain

s(t) = a

[
1

2
τ2
]t
to

=
a

2
t2 − a

2
t2o, for t � to.

Example 5.4.2. The speed of an object moving in a straight line is given by
the function v(t) = 25− 2t in meters per second, where the time t is measured
in seconds. Compute the distance traveled by the object from time t = 0 till it
stops.

Solution: The object stops when v(t) = 0, or t =
25

2
seconds. The distance

traveled by the object over the interval [0, t] is

s(t) =

∫ t

0

v(τ) dτ

=

∫ t

0

(25− 2τ) dτ

=
[
25τ − τ2

]t
0
,

so that
s(t) = 25t− t2, for t � 0. (5.192)

Substituting t =
25

2
in equation (5.192) yields

s

(
25

2

)
=

(25)2

2
− (25)2

4
=

(25)2

4
,

so that the object travels 156.25 meters from t = 0 till it stops. �

The procedure outlined above to recover the distance traveled by an object
from its speed as a function of time can also be applied to a quantity, Q(t),
whose rate of change, R(t), is known at all times. Suppose that R is a continuous
function of time and that the amount Q(t) is known at some time to; that is,
Q(to) is known. We would like to know what Q(t) is for all t � to.

If t = t1 is such that the length of the interval [to, t1] is very small, then we
can approximate the rate of change of Q over the interval [to, t1] by a constant
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rate R(τ1), where τ1 is any time in [to, t1]. It follows that the quantity Q
increases or decreases approximately by

R(τ1)(t1 − to).

It then follows that the amount Q at time t1 is Q(to) +R(τ1)(t1 − to), approxi-
mately, or

Q(t1) ≈ Q(to) +R(τ1)(t1 − to),

which can be re–written as

Q(t1)−Q(to) ≈ R(τ1)(t1 − to). (5.193)

An argument similar to that leading to (5.193) can be used to obtain a sequence
of estimates

Q(tk)−Q(tk−1) ≈ R(τk)(tk − tk−1), for k = 1, 2, 3, . . . , n, (5.194)

where
to < t1 < t2 < t3 < · · · tn−1 < tn = t (5.195)

is a succession of times with the property that the largest of the time intervals,
tk − tk−1, for k = 1, 2, 3, . . . , n, tends to 0 as n tends to infinity, and τk is any
time in the interval [tk−1, tk].

Adding the expressions in (5.194) and using (5.195) we obtain the estimate

Q(t)−Q(to) ≈
n∑

k=1

R(τk)(tk − tk−1). (5.196)

Letting n tend to infinity on the right—hand side of (5.196) and using Theorem

5.3.1, we see that the right—hand side of (5.196) tends to

∫ t

to

R(τ) dτ, in view

of the assumption that the rate, R, is a continuous function of t. The continuity
of R also allows us to conclude that the approximations in (5.196) tend to the
exact representation

Q(t)−Q(to) =

∫ t

to

R(τ) dτ,

or

Q(t) = Q(to) +

∫ t

to

R(τ) dτ, for t � to. (5.197)

The expression in (5.197) answers in the positive the question of whether we
can recover a function from its rate of change in the case in which the rate of
change is assumed to be continuous.

Example 5.4.3. Suppose that the rate of change of a quantity, Q, of a sub-
stance is proportional t for t � 1. Given that Q(1) = 2, compute Q(t) for all
t � 1.
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Solution: The rate of change of Q with respect to t, denoted by R, is given by

R(t) =
K

t
, for t � 0,

for some constant of proportionality K.

Using the formula in (5.197) we have that

Q(t) = Q(1) +

∫ t

1

K

τ
dτ = 2+K ln t, for t � 0.

�

5.4.2 Computing a Quantity from its Density

Imagine the quantity of a substance is distributed in a cylindrical region with
axis along the x–axis over an interval [a, b], as shown in Figure 5.4.36. Assume

x
a bx

k−1 x
k

Figure 5.4.36: Cylindrical Rod

the cross sectional area of the cylinder is a constant, A. Assume also that there
is continuous function of x, denoted by ρ, with the property that ρ(x)/A gives
the density of the substance at x in units of amount of substance per volume;
so that ρ(x) is in units of amount of substance per length. The function ρ is
called a linear density. It then follows that the amount of the substance in a
small section of the cylindrical rod over the interval [xk−1, xk] shown in Figure
5.4.36 is given, approximately, by

ρ(τk)

A
·A(xk − xk−1) = ρ(τk) · (xk − xk−1), (5.198)

where τk is any point in the interval [xk−1, xk].

Next, consider a subdivision

[xo, x1], [x1, x2], . . . , [xn−2, xn−1], [xn−1, xn], (5.199)

where xo = a and xn = b, of the interval [a, b] with the property that the largest
length of the intervals in (5.199) tends to 0 as n tends to infinity. Then, and
approximation to the total quantity, Q, of substance in the rod is sum of the
approximations in (5.198),

Q ≈
n∑

k=1

ρ(τk) · (xk − xk−1). (5.200)
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Letting n tend to infinity on the right–hand side of (5.200), using assumption
of continuity of ρ, and applying Theorem 5.3.1, we get from (5.200) that

Q =

∫ b

a

ρ(x) dx. (5.201)

Example 5.4.4. A rod of length 0.5 meter lies along the x–axis with one end
at 0. Suppose the rod is made up of material whose linear density, ρ, varies
with x according to the formula

ρ(x) = 1 + 2
√
x, for x � 0,

in grams per meter, where x is measured in meters. Then, according to (5.201),
the total mass, M , of the rod is given by

M =

∫ 1/2

0

(1 + 2
√
x) dx =

[
x+

2

3/2
x3/2

]1/2
0

=
1

2
+

4

3

1

2
√
2
,

so that the mass of the rod is

M =
1

2
+

√
2

3
grams.

5.4.3 Average Value of a Function

Given a piecewise continuous function, f , defined on some interval I, which
contains a and b with a < b, the average value of the function f over [a, b] is
defined by

1

b − a

∫ b

a

f(t) dt. (5.202)

We will denote the value in (5.202) by f , so that

f =
1

b− a

∫ b

a

f(t) dt, (5.203)

with the understanding that f also depends on the interval, [a, b], over which
the calculations are done.

Example 5.4.5. Compute the average value of f(t) = 1− t2 over the interval
[−1, 1].
Solution: The graph of f over [−1, 1] is shown in Figure 5.4.37. Using the
formula in (5.203) we obtain that

f =
1

1− (−1)

∫ 1

−1

(1− t2) dt =
1

2

∫ 1

−1

(1− t2) dt. (5.204)

Thus, using the symmetry of the graph of f with respect to the y–axis, we
obtain from (5.204) that

f =

∫ 1

0

(1− t2) dt =

[
t− 1

3
t3
]1
0

=
2

3
.

�
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t

y

−1 1

Figure 5.4.37: Sketch of graph of y = 1− t2

Remark 5.4.6 (Interpretation of the Average Value). For the case in which
f(t) � 0 for all t ∈ [a, b], the average value of f over [a, b] represents the height,

y, of a rectangle over [a, b] with area

∫ b

a

f(t) dt; that is,

y(b − a) =

∫ b

a

f(t) dt,

from which we get the formula

y =
1

b− a

∫ b

a

f(t) dt,

for the average value of f in (5.203). This is illustrated in Figure 5.4.38 for the
function in Example 5.4.5.

t

y

−1 1

Figure 5.4.38: y(b− a) =
∫ b

a f(t) dt

Example 5.4.7 (Average Rate of Change). We saw in Section 5.4.1 that, if R
is a continuous function of t that gives the rate of change of a function, f , at
any time t in the interval [a, b], then

f(b) = f(a) +

∫ b

a

R(t) dt, (5.205)

(see the formula in (5.197) applied to Q = f , to = a, f = b).
It follows from (5.205) that

1

b− a

∫ b

a

R(t) dt =
f(b)− f(a)

b− a
; (5.206)
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in other words, the average rate of change of f over [a, b], for a < b, is given by
f(b)− f(a)

b− a
.

We will denote the left–hand side of (5.205) by Rf (a, b), so that

Rf (a, b) =
1

b− a

∫ b

a

R(t) dt, for a �= b, (5.207)

and, in view of (5.206),

Rf (a, b) =
f(b)− f(a)

b− a
, for a �= b. (5.208)

The right–hand side of (5.208) is called the difference quotient of f over [a, b].
This will be the starting point in our study of the differential Calculus in the
next chapter in these notes.



Chapter 6

Differential Calculus

In Example 5.4.7 of the previous chapter we saw that that the average rate of
change for continuous function, f , over and interval [a, b], for a �= b, is given by
the equation in (5.208); namely,

Rf (a, b) =
f(b)− f(a)

b − a
, for a �= b, (6.1)

(see also the expression in (5.208)). Thus, the expression in on the right–hand
of (6.1), known as the difference quotient of f from a to b, gives the average
rate of change of f from a to b. In this chapter we will see how to go from an
average rate of change to an instantaneous rate of change.

6.1 Instantaneous Rate of Change

In this section we solve the inverse problem to the one introduced in Chapter
2 and solved in Section 5.4.1: Given a function f , can we determine its rate of
change, R?

We begin with the average rate of change over a small interval [t, t + h],
where h > 0, or [t + h, t] for h < 0. For the case h > 0, we have, according to
(6.1), that the average rate of change of f from t to t+ h is

Rf (t, t+ h) =
f(t+ h)− f(t)

h
. (6.2)

We postulate that, if the expression in (6.2) has a limit as h → 0, then the limit
will be the rate of change of f at t, or the instantaneous rate of change of
f at t.

Definition 6.1.1 (Instantaneous Rate of Change). Let f be a function defined
on an open interval I and t ∈ I. If the limit

lim
h→0

Rf (t, t+ h) = lim
h→0

f(t+ h)− f(t)

h
(6.3)

93
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exists, we call it the instantaneous rate of change of f at t. If the limit in
(6.3) exists, we denote it by f ′(t), and call f ′(t) the derivative of f at t. We
then have that

f ′(t) = lim
h→0

f(t+ h)− f(t)

h
, (6.4)

provided that the limit on the right–hand side of (6.4) exists.

Example 6.1.2. Let f(t) =
√
t for t � 0. Show that the instantaneous rate of

change of f exists for all t > 0, and compute the derivative f ′(t) for all t > 0.
Solution: We first compute the difference quotient

f(t+ h)− f(t)

h
=

√
t+ h−√

t

h

=

√
t+ h−√

t

h
·
√
t+ h+

√
t√

t+ h+
√
t

=
(
√
t+ h)2 − (

√
t)2

h(
√
t+ h+

√
t)

=
t+ h− t

h(
√
t+ h+

√
t)
,

for h �= 0, so that

f(t+ h)− f(t)

h
=

1√
t+ h+

√
t
, for h �= 0. (6.5)

Next, use the fact that the function f is continuous and t > 0 to see that the
limit as h → 0 of the right–hand side of (6.5) exists and equals

lim
h→0

1√
t+ h+

√
t
=

1√
t+ 0+

√
t
=

1

2
√
t
, for t > 0. (6.6)

Combining (6.5) and (6.6) we see that

lim
h→0

f(t+ h)− f(t)

h
=

1

2
√
t
, for t > 0, (6.7)

so that, according to (6.4) in Definition 6.1.1, the instantaneous rate of change
of f(t) =

√
t, for t � 0, exists for all t > 0, and is given by

f ′(t) =
1

2
√
t
, for t > 0.

�

Example 6.1.3. Let f(t) = |t| for t ∈ R. Show that the instantaneous rate of
change of f does not exist at t = 0.
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Solution: In this case the difference quotient at 0 is

f(0 + h)− f(0)

h
=

|h|
h
, for h �= 0;

so that
f(0 + h)− f(0)

h
=

{
−1, if h < 0;

+1, if h > 0.

Thus, lim
h→0−

f(0 + h)− f(0)

h
= −1, while lim

h→0+

f(0 + h)− f(0)

h
= +1. It then

follows that lim
h→0

f(0 + h)− f(0)

h
does not exist. Consequently, the rate of

change of f(t) = |t|, for t ∈ R, does not exist at t = 0. �

6.2 Differentiable Functions

Definition 6.2.1 (Differentiable Functions). A real valued function, f , defined
on an open interval, I, is said to be differentiable at t ∈ I if the limit

lim
h→0

f(t+ h)− f(t)

h
(6.8)

exists. If the limit in (6.8) exists at every t ∈ I, then f is said to be differentiable
in I.

The concept of a differentiable function is a very important one in Calculus
and it applications. We have already seen that the problem of finding the in-
stantaneous rate of a change for a function, f , at time, t, is solved by computing
the limit in (6.8) at t, provides that the limit exists. Hence, the problem of com-
puting instantaneous rates of change can be solved for differentiable functions.
In a subsequent section in these notes we will give other interpretations of the
derivative of a differentiable function. In this section we present several exam-
ples of differentiable functions. We also discuss a few properties of differentiable
functions.

Example 6.2.2 (Derivative of a Constant Function). Let f(t) = c, for all t ∈ R,
where c is a constant. Then, f is differentiable for all t ∈ R and f ′(t) = 0 for
all t. This example is worked out in Problem 3 of Assignment #13.

Example 6.2.3 (Derivative of the Identity Function). Let f(t) = t, for all
t ∈ R. Then, f is differentiable for all t ∈ R and f ′(t) = 1 for all t. This
example is worked out in Problem 4 of Assignment #13.

Example 6.2.4 (Derivative of a Power Function). Let f(t) = tn, for all t ∈ R.
Then, f is differentiable for all t ∈ R and f ′(t) = ntn−1 for all t.
Solution: To see why f is differentiable for all t ∈ R, first compute the differ-
ence quotient

f(t+ h)− f(t)

h
=

(t+ h)n − tn

h
, for h �= 0. (6.9)
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Next, use the factorization fact in Appendix A,

an − bn = (a− b)(an−1 + an−2b+ an−3b2 + · · · abn−2 + bn−1),

to write

(t+h)n−tn = (t+h−t)[(t+h)n−1+(t+h)n−2t+(t+h)n−3t2+· · ·+(t+h)tn−2+tn−1],

from which we get that

(t+ h)n − tn = h[(t+ h)n−1 + (t+ h)n−2t+ · · ·+ (t+ h)tn−2 + tn−1]. (6.10)

Dividing both sides of the equation in (6.10) by h �= 0 yields

(t+ h)n − tn

h
= (t+ h)n−1 + (t+ h)n−2t+ · · ·+ (t+ h)tn−2 + tn−1, (6.11)

for h �= 0. Note that that, for fixed t ∈ R, the right–hand side of (6.11) is a
polynomial in h. Since polynomials are continuous, it follows that the limit of
the expression on the right–hand side of (6.11) as h → 0 exists, and

lim
h→0

[(t+ h)n−1 + (t+ h)n−2t+ · · ·+ (t+ h)tn−2 + tn−1] = ntn−1, (6.12)

since there are n terms on the right–hand side of (6.11) all tending to tn−1 as
h → 0.

Combining (6.11) and (6.12) yields

lim
h→0

(t+ h)n − tn

h
= ntn−1,

which shows that f(t) = tn, for t ∈ R, is differentiable at every t ∈ R and

f ′(t) = ntn−1, for all t ∈ R,

which was to be shown. �

Theorem 6.2.5 (Some Properties of Differentiable Functions). Let f and g
denote real–valued functions defined in some open interval, I.

(i) Suppose that f is differentiable at t ∈ I. Then, for any constant, c, the
function cf is differentiable at t, and

(cf)′(t) = cf ′(t).

(ii) Suppose that f and g are differentiable at t. Then, the function f + g is
differentiable at t and

(f + g)′(t) = f ′(t) + g′(t).
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Proof of (i): First, compute the difference quotient

(cf)(t+ h)− (cf)(t)

h
=

cf(t+ h)− cf(t)

h
, for h �= 0,

so that

(cf)(t+ h)− (cf)(t)

h
= c · f(t+ h)− f(t)

h
, for h �= 0, (6.13)

where we have factored out c in the numerator in the right–hand side of (6.13).
Note that, since we are assuming that f is differentiable at t, the limit as

h → 0 of the difference quotient in the right–hand side of (6.13) exists. It then
follows from Function Limit Fact 1 and (ii) of Function Limit Fact 3 on page 22
in these notes that the limit as h → 0 of the difference quotient in the left–hand
side of (6.13) exists and

lim
h→0

(cf)(t+ h)− (cf)(t)

h
= c lim

h→0

f(t+ h)− f(t)

h
= cf ′(t). (6.14)

The limit expression in (6.14) shows that cf is differentiable at t and

(cf)′(t) = cf ′(t),

which was to be shown. �

Proof of (ii): First, compute the difference quotient

(f + g)(t+ h)− (f + g)(t)

h
=

f(t+ h) + g(t+ h)− (f(t) + g(t))

h

=
f(t+ h)− f(t) + g(t+ h)− g(t)

h
,

for h �= 0, which can be re-written as

(f + g)(t+ h)− (f + g)(t)

h
=

f(t+ h)− f(t)

h
+

g(t+ h)− g(t)

h
, (6.15)

for h �= 0.
Note that, since we are assuming that f and g are differentiable at t, the

limit as h → 0 of the difference quotients in the right–hand side of (6.15) exist.
It then follows from (i) of Function Limit Fact 3 on page 22 in these notes that
the limit as h → 0 of the sum of the difference quotients in the right–hand side
of (6.15) exists and therefore

lim
h→0

(f + g)(t+ h)− (f + g)(t)

h
= f ′(t) + g′(t), (6.16)

by the definition of the derivatives of f and g at t. The limit expression in (6.16)
shows that f + g is differentiable at t and

(f + g)′(t) = f ′(t) + g′(t),

which was to be shown. �
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Example 6.2.6. Let f : R → R denote the polynomial function defined by

f(t) = 2t3 − 3t2 + t− 5, for t ∈ R. (6.17)

Then, by the results in Examples 6.2.2 and 6.2.4 and the Differentiable Functions
Facts (i) and (ii) in Theorem 6.2.5, f is differentiable in R, and

f ′(t) = 2(3)t2 − 4(2)t+ 1− 0 = 6t2 − 8t+ 1, for t ∈ R. (6.18)

Thus, the derivative of the third–degree polynomial, f , given in (6.17) is the
second–degree polynomial, f ′, given in (6.18).

Remark 6.2.7. The result of Example 6.2.6 holds true for a general nth–degree
polynomial, p(t) = ant

n+an−1t
n−1+· · ·+att

2+a1t+ao, where ao, a1, a2, . . . , an
are real constants with an �= 0. The polynomial function, p, is differentiable for
all t ∈ R, and its derivative, p′, is the polynomial of degree n − 1 given by
p′(t) = nant

n−1 + (n− 1)an−1t
n−2 + · · ·+ 2a2t+ a1, for all t ∈ R (see Problem

2 in Assignment #14).

The difference quotient,

f(t+ h)− f(t)

h
, for h �= 0,

is also denoted by the symbol

Δf

Δt
=

f(t+Δt)− f(t)

Δt
, for Δt �= 0, (6.19)

read, “the change in f over the change in t.” It follows from (6.19) and Definition
6.2.1 that, if f is differentiable at t, then

lim
Δt→0

Δf

Δt
= f ′(t). (6.20)

The limit expression in the left–hand side of (6.20) is often denoted by the

symbol
df

dt
. Thus,

df

dt
= lim

Δt→0

Δf

Δt
, (6.21)

provided that f is differentiable at t.

Definition 6.2.8 (Differential Notation). The symbol df in the left–hand side
of (6.21) is called the differential of f , and dt the differential of t. The symbol
d

dt
is is an example of a differential operator—it operates on a differentiable

function, f , to yield its derivative f ′. Thus, in view of (6.21), if f is differentiable
at t, then

d

dt
[f ] =

df

dt
= f ′(t).
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Remark 6.2.9. Using the differential notation in Definition 6.2.8 the properties
in Theorem 6.2.5 can be written as

(i)
d

dt
[cf ] = c

df

dt
, for any constant c, whenever f is differentiable.

(ii)
d

dt
[f + g] =

df

dt
+

dg

dt
, whenever f and g are differentiable.

6.3 Interpretations of the Derivative

We have already seen that the derivative of a differentiable function, f , of time,
t, gives the instantaneous rate of change of f at t, f ′(t). There are other interpre-
tations of the derivative. We begin with the concept of a linear approximation
to a differentiable function.

6.3.1 Linear Approximation of a Differentiable Function

Suppose that f is a real valued function of a single variable, t, defined in an
open interval, I. Assume that f is differentiable at a ∈ I; then, by virtue of
Definition 6.2.1,

lim
h→0

f(a+ h)− f(a)

h
= f ′(a). (6.22)

Setting t = a+ h, we can rewrite (6.22) as

lim
t→a

f(t)− f(a)

t− a
= f ′(a). (6.23)

The limit expression in (6.23) is in turn equivalent to

lim
t→a

∣∣∣∣f(t)− f(a)

t− a
− f ′(a)

∣∣∣∣ = 0,

which can be written as

lim
t→a

∣∣∣∣f(t)− f(a)− f ′(a)(t − a)

t− a

∣∣∣∣ = 0,

or

lim
t→a

|f(t)− f(a)− f ′(a)(t − a)|
|t− a| = 0. (6.24)

Write

Ef (a; t) = f(t)− f(a)− f ′(a)(t− a), for t ∈ I. (6.25)

It follows from (6.25) and (6.24) that, if f is differentiable at a, then

lim
t→a

|Ef (a; t)|
|t− a| = 0. (6.26)
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Solving for f(t) in (6.25) we obtain

f(t) = f(a) + f ′(a)(t− a) + Ef (a; t), for t ∈ I, (6.27)

where the term Ef (a; t) satisfies the limit condition in (6.26), provided that f
is differentiable at a ∈ I.

The expression in (6.26) implies that, if f is differentiable at a, then the
term Ef (a; t) tends to 0 as t tends to a. Thus, for values of t very close to a,
we get the approximation

f(t) ≈ f(a) + f ′(a)(t− a), for t in I very close to a. (6.28)

The expression on the right–hand side of (6.28) is known as the linear approx-
imation to f at a. We will denote it by

Lf (a; t) = f(a) + f ′(t)(t− a), for t ∈ R. (6.29)

Using the definition of Lf in (6.29) we obtain from (6.27) that, if f is differen-
tiable at a, then

f(t) = Lf(a; t) + Ef (a; t), for t ∈ I, where lim
t→a

|Ef (a; t)|
|t− a| = 0. (6.30)

We can re–write (6.30) by introducing the “little–o” notation.

Definition 6.3.1 (Little–o Notation). A quantity E(h) is said to be little–o of
|h|, written

E(h) = o(|h|),
if and only if

lim
h→0

|E(h)|
|h| = 0.

Thus, in view of Definition 6.3.1, if f is differentiable at a, then

f(t) = Lf (a; t) + o(|t− a|), for t ∈ I, (6.31)

where
Lf (a; t) = f(a) + f ′(t)(t− a), for t ∈ R,

is the linear approximation of f at a. Thus, differentiability a a implies that f
can be approximated by a linear function at a in the sense given in (6.31).

Example 6.3.2. Let f(t) = 4 − t2 for all t ∈ R. We compute the linear
approximatively, Lf (1; t), of f at 1,

Lf (1; t) = f(1) + f ′(1)(t− 1), for t ∈ R, (6.32)

where

f ′(t) =
d

dt
[4− t2] =

d

dt
[4]− d

dt
[t2] = −2t, for t ∈ R,
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t

y

Figure 6.3.1: Sketch of graph of y = f(t) = 4− t2 and y = Lf (1; t)

so that f ′(1) = −2. We then get from (6.32) that

Lf(1; t) = 3− 2(t− 1), for t ∈ R,

or
Lf (1; t) = 5− 2t, for t ∈ R.

Figure 6.3.1 shows a sketch shown the graphs of y = f(t) and its linear approx-
imation at 1.

Figure 6.3.1 in Example 6.3.2 gives a graphical illustration of the meaning
of the statement in (6.28) for a function f that is differentiable at a. In the case
of the function f in Example 6.3.2 we have, with a = 1:

f(t) ≈ 3− 2(t− 1), for t close to 1,

or
4− t2 ≈ 5− 2t, for t close to 1.

Observe that the graphs of y = 4−t2 and y = 5−2t are almost indistinguishable
for values of t very close to t = 1.

6.3.2 Tangent Line to a Curve

An examination of the graphs in Figure 6.3.1 in Example 6.3.2 suggests that the
line y = Lf (1; t) meets the graph of y = f(t) at exactly one point; namely, the



102 CHAPTER 6. DIFFERENTIAL CALCULUS

point (1, 3). We can verify this statement algebraically by solving the equation

4− t2 = 5− 2t,

or

t2 − 2t+ 1 = 0,

or

(t− 1)2 = 0,

which yields exactly one solution: t = 1. Thus, the only point of intersection of
the curves y = 4− t2 and y = 5− 2t is the point (1, 3). We say that y = 5− 2t
is tangent to the curve y = 4− t2 at the point (1, 3). Observe that the slope of
the tangent line, y = 5− 2t, to the graph of y = f(t) at a = 1 is f ′(1) = −2. In
other words, the derivative of f at 1 gives the slope of the tangent line to the
graph of y = f(t) at (1, f(1)). We will make this observation the basis for the
definition of the tangent line to the graph of a differentiable function, f , at a
point (a, f(a)).

Definition 6.3.3 (Tangent Line to the Graph of a Differentiable Function). Let
f denote a real valued function defined in an open interval, I, of the real line
containing a point a. Assume that f is differentiable at a. Then, the derivative
of f at a gives the slope of the tangent line to the graph of y = f(x) in the
xy–plane over the interval I. The equation of the tangent line to the graph of
y = f(x) at the point (a, f(a)) is

y = f(a) + f ′(a)(x − a). (6.33)

Example 6.3.4. Give the equation of the tangent line to the graph of y = sinx

at the point

(
π

3
,

√
3

2

)
.

t

y

π

Figure 6.3.2: Sketch of graphs of y = sinx and its tangent line at
(

π
3 ,

√
3
2

)
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Solution: Let f(x) = sinx for all x ∈ R. We first derive a formula for comput-
ing f ′(x) = sin′(x) for all x ∈ R.

Using the trigonometric identity

sin(α+ β) = sinα cosβ + cosα sinβ

to compute the difference

sin(x + h)− sinx = sinx cosh+ cosx sinh− sinx

= (cosh− 1) sinx+ sinh cosx,

so that, dividing by h �= 0,

sin(x + h)− sinx

h
=

cosh− 1

h
sinx+

sinh

h
cosx, for h �= 0. (6.34)

Using the result in (3.25) in Example 3.2.12 we have that

lim
h→0

cosh− 1

h
= 0 (6.35)

Similarly, using the limit fact derived in Example 3.2.14,

lim
h→0

sinh

h
= 1. (6.36)

Thus, combining (6.34), (6.35) and (6.34), we conclude that the limit as h → 0
of the difference quotient in the left–hand side of (6.36) exists and

lim
h→0

sin(x+ h)− sinx

h
= cosx, for all x ∈ R, (6.37)

where we have used the Function Limit Fact 3 in Theorem 3.2.7 on page 22 in
these notes.

We conclude from (6.38) that sin is differentiable in R and

sin′(x) = cosx, for all x ∈ R. (6.38)

The equation of the tangent to the graph of y = sinx at the point

(
π

3
,

√
3

2

)
is given by (6.33) with a =

π

3
and f = sin:

y = sin
(π
3

)
+ sin′

(π
3

)(
x− π

3

)
,

or, using (6.38),

y =

√
3

2
+ cos

(π
3

)(
x− π

3

)
,
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or

y =

√
3

2
+

1

2

(
x− π

3

)
. (6.39)

Figure 6.3.2 shows a sketch of the graphs of y = sinx and its tangent line at

the point

(
π

3
,
1

2

)
. Notice that the tangent line given by (6.33) in Definition

6.3.3 meets the sine cure in the figure at two points and not just at

(
π

3
,
1

2

)
.

However, when we focus on some small interval around
π

3
, the line in (6.39)

meet the graph of y = sinx at exactly one point. �

6.4 Properties of the Derivative

We have already seen that of if f and g are differentiable at t, then so are the
functions cf and f + g, where c is a constant. Furthermore,

d

dt
[cf ] = c

df

dt
(6.40)

and
d

dt
[f + g] =

df

dt
+

df

dt
. (6.41)

Properties (6.40) and (6.41) and very useful in determining the differentiability
properties functions obtained by adding multiples of differentiable functions
(e.g., polynomial functions).

Example 6.4.1. The function f : R → R given by f(t) = 3t2 + 2 sin t, for
all t ∈ R, is differentiable because it is the sum of multiples of differentiable
function and

f ′(t) =
d

dt
[3t2 + 2 sin t] = 6t+ 2 cos t, for all t ∈ R,

It this section we study three additional properties of differentiable functions.
We begin by considering products of differentiable functions.

6.4.1 Products of Differentiable Functions

Let f and g denote functions defined on an open interval I. Assume that f and
g are differentiable at t ∈ I. Then we can write

f(t+ h) = f(t) + f ′(t)h+ Ef (h), for |h| sufficiently small, (6.42)

where

Ef (h) = o(|h|). (6.43)
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Similarly,

g(t+ h) = g(t) + g′(t)h+ Eg(h), for |h| sufficiently small, (6.44)

where
Eg(h) = o(|h|). (6.45)

Multiplying the expressions in (6.42) and (6.44) yields

f(t+ h)g(t+ h) = (f(t) + f ′(t)h+ Ef (h))(g(t) + g′(t)h+ Eg(h))

= f(t)g(t) + f(t)g′(t)h+ f(t)Eg(h)
+f ′(t)g(t)h+ f ′(t)g′(t)h2 + f ′(t)Eg(h)h
+g(t)Ef (h) + g′(t)Ef (h)h+ Ef (h)Eg(h),

from which we get that

f(t+ h)g(t+ h)− f(t)g(t) = h[f(t)g′(t) + f ′(t)g(t) + f ′(t)Eg(h) + g′(t)Ef (h)]
+f(t)Eg(h) + f ′(t)g′(t)h2

+g(t)Ef (h) + Ef (h)Eg(h),

which yields

f(t+ h)g(t+ h)− f(t)g(t)

h
= f(t)g′(t) + f ′(t)g(t)

+ f ′(t)Eg(h) + g′(t)Ef (h) + f(t)
Eg(h)

h

+ f ′(t)g′(t)h+ g(t)
Ef (h)

h
+ Ef (h)

Eg(h)

h
,

for h �= 0.
Observe that all the terms on the right–hand side of the previous equation,

except for the first two, tend to 0 as h → 0, in view of (6.43) and (6.45). Conse-

quently, the limit as h → 0 of the difference quotient
f(t+ h)g(t+ h)− f(t)g(t)

h
exists and

lim
h→0

f(t+ h)g(t+ h)− f(t)g(t)

h
= f(t)g′(t) + f ′(t)g(t);

thus, if f and g are differentiable at t, then the product function fg : I → R

given by
(fg)(t) = f(t)g(t), for all t ∈ R,

is differentiable at t and

(fg)′(t) = f(t)g′(t) + f ′(t)g(t). (6.46)

The property in (6.46) is usually referred to as the product rule. We can
rewrite it as

d

dt
[fg] = f

dg

dt
+

df

dt
g. (6.47)
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Example 6.4.2. The function f : R → R given by f(t) = t2 sin t, for all t ∈ R,
is differentiable because it is the product of differentiable function and, using
(6.47),

f ′(t) =
d

dt
[t2 sin t]

= t2
d

dt
[sin t] +

d

dt
[t2] sin t

= t2 cos t+ 2t sin t,

for all t ∈ R.

6.4.2 Compositions of Differentiable Functions

Let f g be two functions such that g(t) lies in the domain of f for all t in the
domain of g. Then, according to Definition 4.1.8, the composition of f and g,
denoted f ◦ g, is defined and

f ◦ g(t) = f(g(t)), for t in the domain of g. (6.48)

We will see in this section that, if g is differentiable at t, and f is differentiable
a g(t), then the composition, f ◦ g, is differentiable at t.

Suppose that g is differentiable at t so that

g(t+ h) = g(t) + g′(t)h+ Eg(h), for |h| sufficiently small, (6.49)

where

Eg(h) = o(|h|). (6.50)

Similarly, if f is differentiable at g(t), setting u = g(t), we can write

f(u+ v) = f(u) + f ′(u)v + Ef (v), for |v| sufficiently small, (6.51)

where

Ef (v) = o(|v|). (6.52)

Now, using the definition of f ◦ g in (6.48), we compute

f ◦ g(t+ h) = f(g(t+ h))

= f(g(t) + g′(t)h+ Eg(h)),
(6.53)

where we have used (6.49).
Setting

u = g(t) (6.54)

and

v = g′(t)h+ Eg(h), (6.55)
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we can rewrite the result in (6.53) as

f ◦ g(t+ h) = f(u+ v). (6.56)

Note that, by virtue of (6.50) and (6.55), |v| → 0 as |h| → 0; thus, using (6.51)
we can rewrite (6.56) as

f ◦ g(t+ h) = f(u) + f ′(u)v + Ef (v), for |h| small. (6.57)

Substituting (6.54) and (6.55) into (6.57), we obtain

f ◦ g(t+ h) = f(g(t)) + f ′(g(t))(g′(t)h+ Eg(h)) + Ef (v),

for |h| small, so that

f ◦ g(t+ h)− f ◦ g(t) = f ′(g(t))g′(t)h+ f ′(g(t))Eg(h) + Ef (v), (6.58)

for |h| small. Dividing both sides of (6.58) by h �= 0 we get

f ◦ g(t+ h)− f ◦ g(t)
h

= f ′(g(t))g′(t) + f ′(g(t))
Eg(h)

h
+

Ef (v)

h
, (6.59)

for 0 < |h| small.
Observe that

lim
h→0

Eg(h)

h
= 0, (6.60)

by virtue of (6.50). To see what happens to the term
Ef (v)

h
, write

Ef (v)

h
=

Ef (v)

v
· v
h
, for h �= 0,

from which we get

|Ef (v)|
|h| =

|Ef (v)|
|v| · |v||h| , for h �= 0, (6.61)

after taking absolute values.
Now, it follows from (6.55) and the triangle inequality that

|v| � |g′(t)||h|+ |Eg(h)|, (6.62)

so that, after division by |h| > 0,

|v|
|h| � |g′(t)|+ |Eg(h)|

|h| , for h �= 0. (6.63)

Combining (6.61) and (6.63) we get

|Ef (v)|
|h| � |Ef (v)|

|v|
[
|g′(t)|+ |Eg(h)|

|h|
]
, for h �= 0. (6.64)
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Next, apply the Squeeze Theorem to the inequality in (6.64), together with
(6.62), (6.60) and (6.52), to conclude that

lim
h→0

Ef (v)

h
= 0. (6.65)

it follows from (6.60) and (6.65) that the limit as h tends to zero of the
expression on the right–hand side of (6.59) exists and equals f ′(g(t)) · g′(t).
Consequently,

lim
h→0

f ◦ g(t+ h)− f ◦ g(t)
h

= f ′(g(t)) · g′(t),

which shows that f ◦ g is differentiable at t and

(f ◦ g)′(t) = f ′(g(t)) · g′(t),

or
d

dt
[f(g(t))] = f ′(g(t)) · d

dt
[g(t)]. (6.66)

The expression in (6.66) is usually referred to as the Chain Rule.

Example 6.4.3. The function f : R → R given by f(t) = sin(t2), for all t ∈
R, is differentiable because it is the composition of the sine function and the
the polynomial function p(t) = t2, for t ∈ R, both of which are differentiable
everywhere. Using (6.66) we obtain

f ′(t) =
d

dt
[sin(t2)]

= sin′(t2) · d

dt
[t2]

= 2t cos(t2),

for all t ∈ R.

Example 6.4.4. Let g be a real valued function defined in some open interval,
I. Assume that g is differentiable at a ∈ I an that g(a) �= 0. We consider the
function

f(t) =
1

g(t)
,

for t near a such that g(t) �= 0.



Chapter 7

Fundamental Theorems

This chapter brings together three major concepts that we have studied in these
notes: continuity, the Riemann integral, and the derivative. One thing that
these concepts have in common is that they were all defined using the notion of
limit; as such, they belong to realm of Calculus. There is also a very important
connection between these concepts that was hinted by the observation that
integration yields a function from its rate change, provided that the rate of
change is continuous.

7.1 Recovering a Function from its Rate

We saw in Section 5.4.1 that, if R is the rate of change of a function, f , of time,
t, over some interval I, and R is continuous over I, then, for any a ∈ I,

f(t) = f(a) +

∫ t

a

R(τ) dτ, for all t ∈ I. (7.1)

In Section 6.1 we learned that the rate of change of a differentiable function,
f , over an open interval, I, is given by its derivative, f ′; in other words, it R
denotes the rate of change of a function, f , over the interval, I, then

R(t) = f ′(t) for all t ∈ I. (7.2)

Combining the results in (7.1) and (7.2), together with the requirement that f ′

be continuous on I, we obtain the result

f(t) = f(a) +

∫ t

a

f ′(τ) dτ, for all t ∈ I,

provided that f ′ is continuous on I. In these notes, we shall refer to this result
as the the First Fundamental Theorem of Calculus or FTC I, for short.
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Theorem 7.1.1 (First Fundamental Theorem of Calculus (FTC I)). Let f be
a differentiable function defined in an open interval I containing a. Suppose
that f ′ is continuous on I. Then,

f(t) = f(a) +

∫ t

a

f ′(τ) dτ, for all t ∈ I.

Theorem 7.1.1 provides a complete solution to the the problem that we posed
at the start of these notes for the case in which the rate is a continuous function.

As an application of the First Fundamental Theorem of Calculus we present
the following example.

Example 7.1.2. Let f denote a differentiable function defined over some in-
terval I. Assume that f ′(t) = 0 for all t ∈ I. We show that f must be constant
in I.

Pick any point a ∈ I and apply the First Fundamental Theorem of Calculus
to get

f(t) = f(a) +

∫ t

a

f ′(τ) dτ = f(a) + 0 = f(a), for all t ∈ I,

since f ′(t) = 0 for all t ∈ I; thus, f is constant on I.

7.2 Differentiability of the Area Function

Let f denote a continuous function of an open interval I. For a fixed a ∈ I, we
saw in Section 5.3 how to define the area function, Af (a;x), for x ∈ I, in terms
of a Riemann integral:

Af (a;x) =

∫ x

a

f(t) dt, for all x ∈ I.

The Second Fundamental Theorem of Calculus (FTC II) states that, if f is
continuous on I, then the area function if differentiable and its derivative is the
function f :

d

dx
[Af (a;x)] = f(x), for x ∈ I,

or
d

dx

[∫ x

a

f(t) dt

]
= f(x), for x ∈ I.

Theorem 7.2.1 (Second Fundamental Theorem of Calculus (FTC II)). Let f
be a continuous function defined in an open interval I containing a. Then, the
function

G(x) =

∫ x

a

f(t) dt, for all x ∈ I,

is differentiable in I and G′(x) = f(x) for all x ∈ I, or

d

dx

[∫ x

a

f(t) dt

]
= f(x), for x ∈ I.
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Remark 7.2.2. A proof of Theorem 7.2.1 may be found in Appendix D of these
notes. However, the idea of the proof is not hard to understand if we observe
that the difference quotient

Af (a;x+ h)−Af (a;x)

h
=

1

h

∫ x+h

x

f(t) dt, for h > 0 small, (7.3)

is the average value of f over the interval [x, x + h]. Denoting this value by
f [x, x+ h], we can rewrite (7.3) as

Af (a;x+ h)−Af (a;x)

h
= f [x, x+ h], for h > 0 small. (7.4)

The continuity of f at x implies that

lim
h→0

f [x, x + h] = f(x). (7.5)

It follows from (7.5) and (7.4) that

lim
h→0

Af (a;x+ h)−Af (a;x)

h
= f(x),

which shows that the area function, Af (a;x), is differentiable at x and its deriva-
tive is f(x).

Example 7.2.3. The function f(t) =
1

t
, for t > 0, is continuous on the interval

I = (0,∞). It then follows by the Second Fundamental Theorem of Calculus
that the natural logarithm function,

ln(x) =

∫ x

1

1

t
dt, for x > 0,

is differentiable on I and

d

dx
[ln(x)] =

1

x
, for x > 0. (7.6)

The formula in (7.6) in Example 7.2.3 provides a very useful differentiation
formula which we state below.

d

du
[ln(u)] =

1

u
, for u > 0. (7.7)

Example 7.2.4. Let f(x) = ln(1 + x2), for all x ∈ R. Then, f is the com-
position of the natural logarithm function, ln, and the polynomial function,
p(x) = 1 + x2, for x ∈ R, both of which are differentiable in their domains.
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Hence, f is differentiable and, applying the Chain Rule, its derivative is given
by

f ′(x) =
d

dx
[ln(1 + x2)] = ln′(1 + x2) · d

dx
[1 + x2]. (7.8)

Then, using the formula in (7.7) for the derivative of the natural logarithm
function, we obtain from (7.8) that

f ′(x) =
1

1 + x2
· (2x) = 2x

1 + x2
, for all x ∈ R.

7.3 Evaluating Integrals

Let f be a function defined in an open interval, I. Assume that f is continuous
on I. For a given a ∈ I, define the area function

G(x) =

∫ x

a

f(t) dt, for all x ∈ I. (7.9)

It follows from the Second Fundamental Theorem of Calculus (Theorem 7.2.1)
that G is differentiable in I and

G′(x) = f(x), for all x ∈ I, (7.10)

since we are assuming that f is continuous in I. Suppose that we are given a
real–valued function, F , defined on I with the property that f is differentiable
in I and

F ′(x) = f(x), for all x ∈ I. (7.11)

Consider the difference of the functions G and F ,

S(x) = G(x) − F (x), for all x ∈ I. (7.12)

It follows from (7.12) that the function S is differentiable and

S′(x) = G′(x)− F ′(x) = f(x)− f(x) = 0, for all x ∈ I, (7.13)

where we have used (7.10) and (7.11). Thus, applying the result i Example
7.1.2, S must be constant, so that

G(x) − F (x) = c, for all x ∈ I, (7.14)

where c is a constant. In view of (7.9) and (7.14), we have therefore shown that,
if f is continuous on I, and F : I → R is a differentiable function with F ′ = f ,
then, for any a ∈ I, ∫ x

a

f(t) dt = F (x) + c, for all x ∈ I, (7.15)

and some constant c. Substituting a for x in (7.15) we obtain that

0 = F (a) + c,
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from which we get the following value for c = −F (a). Substituting this value
in (7.15) yields ∫ x

a

f(t) dt = F (x)− F (a), for all x ∈ I, (7.16)

The expression in (7.16), for the case in which f is continuous in I, is usually
referred to as the Fundamental Theorem of Calculus. We will call it the Third
Fundamental Theorem of Calculus.

Theorem 7.3.1 (Third Fundamental Theorem of Calculus (FTC III)). Let f
be a continuous function defined in an open interval I. Assume that there exists
a function, F , that is differentiable in I and F ′(x) = f(x) for all x ∈ I. Then,
for any a, b ∈ I, ∫ b

a

f(t) dt = F (b)− F (a).
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Appendix A

Facts from Algebra

A.1 The Binomial Theorem

Given a positive integer, n, we define the factorial of n, denoted n! and read “n
factorial,” by

n! = n(n− 1)(n− 2) · · · 2 · 1.
The factorial of 0 is defined to be 0! = 1.

Given real numbers, a and b, the expansion of a+ b raised to the nth power
is given by

(a+ b)n =

n∑
k=0

(
n

k

)
akbn−k, (A.1)

where

(
n

k

)
=

n!

k!(n− k)!
are called binomial coefficients.

A.2 Some Factorization Facts

For real numbers a and b,

a2 − b2 = (a− b)(a+ b),

and
a3 − b3 = (a− b)(a2 + ab+ b2).

In general, for any positive integer n,

an − bn = (a− b)(an−1 + an−2b+ an−3b2 + · · ·abn−2 + bn−1).

115



116 APPENDIX A. FACTS FROM ALGEBRA



Appendix B

Limits Facts

B.1 Limits of Sequence

We begin with the definition of the limit of a sequence.

Definition B.1.1 (Limit of a Sequence). We say that a sequence (an) converges
to a limit � if for every ε > 0 we can find positive integer N such that

n � N implies that |an − �| < ε.

We write

lim
n→∞ |an − �| = 0.

or

lim
n→∞ an = �.

We first see that the Definition B.1.1 implies that a convergent sequence can
have at most one limit �. For, if there were two numbers, �1 and �2, for which
the conditions in the definition are satisfies; that is, for given ε > 0 there exist
positive integers N1 and N2 such that

n � N1 implies that |an − �1| < ε. (B.1)

and

n � N2 implies that |an − �2| < ε, (B.2)

then, using the triangle inequality (see (3.5)), we get that

|�1 − �2| � |�1 − an|+ |an − �2|, for all n. (B.3)

Thus, if we let n denote the larger of N1 and N2, we get from (B.1), (B.2) and
(B.3) that

|�1 − �2| < 2ε (B.4)
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Since ε > 0 is arbitrary in (B.4), we conclude from (B.4) that |�1 − �2| = 0,
which says that �1 = �2. Otherwise, if �1 �= �2, then |�1 − �2| > 0. We can
therefore set

ε =
|�1 − �2|

2
> 0. (B.5)

Now, since (B.4) holds true for any positive value of ε, it must also hold true
for the particular value in (B.5); thus, it must be the case that

|�1 − �2| < |�1 − �2|,

which is nonsense. Hence, �1 = �2; therefore, if a limit exists, it must be unique.
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Properties of the Riemann
Integral
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