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Solutions to Assignment #20

1. In this problem and problems (2) and (3) you will be proving the Dimension
Theorem

dim(NT ) + dim(IT ) = n, (1)

for a linear transformation T : Rn → Rm.

Show that if NT = Rn, then T must be the zero transformation. What is IT in
this case? Verify that (1) holds true in this case.

Solution: Let T : Rn → Rm satisfying NT = Rn. Then, T (v) = 0 for all
v ∈ Rn, which shows that T is the zero transformation.

Also, since T (v) = 0 for all v ∈ Rn, it follows that IT = {0}.
Hence, dim(NT ) = n and dim(IT ) = 0. It then follows that

dim(NT ) + dim(IT ) = n+ 0 = n,

and so the Dimension Theorem (1) holds true in this case. �

2. Suppose that T : Rn → Rm is a linear transformation that is not the zero
function. Put k = dim(NT ).

(a) Explain why k < n.

Solution: If dim(NT ) = n, then NT = Rn, and, therefore,

T (v) = 0, for all v ∈ Rn.

However, we are assuming that T is not the zero function. Hence, dim(NT ) <
n. �

(b) Let {w1, w2, . . . , wk} be a basis for NT . Show that there exist vectors
v1, v2, . . . , vr in Rn such that {w1, w2, . . . , wk, v1, v2, . . . , vr} is a basis for
Rn. What is r in terms of n and k?

Solution: Let {w1, w2, . . . , wk} be a basis for NT . Then k < n by the re-
sult in part (a). Thus, there exists v1 ∈ Rn such that v2 6∈ span({w1, w2, . . . , wk}).
We then have that the set

{w1, w2, . . . , wk, v1}

is linearly independent.
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We consider two possibilities: Either (i) span({w1, w2, . . . , wk, v1}) = Rn,
or (ii) span({w1, w2, . . . , wk, v1}) 6= Rn.

If span({w1, w2, . . . , wk, v1}) = Rn, then {w1, w2, . . . , wk, v1} is a basis for
Rn and n = k + 1. If not, there exists v2 ∈ Rn such that

v2 6∈ span({w1, w2, . . . , wk, v1}).

It then follows that the set

{w1, w2, . . . , wk, v1, v2}

is linearly independent.

Again, we consider two cases: Either (i) span({w1, w2, . . . , wk, v1, v2}) =
Rn, or (ii) span({w1, w2, . . . , wk, v1, v2}) 6= Rn.

If span({w1, w2, . . . , wk, v1, v2}) = Rn, then {w1, w2, . . . , wk, v1, v2} is a ba-
sis for Rn and n = k + 2. If not, there exists v3 ∈ Rn such that

v3 6∈ span({w1, w2, . . . , wk, v1, v2}).

We continue in this fashion until we get vectors v1, v2, . . . , vr in Rn such
that the set

{w1, w2, . . . , wk, v1, v2, . . . , vr} is linearly independent (2)

and
span({w1, w2, . . . , wk, v1, v2, . . . , vr}) = Rn. (3)

It follows from (2) and (3) that {w1, w2, . . . , wk, v1, v2, . . . , vr} is a basis for
Rn and therefore k + r = n, from which we get that r = n− k. �

3. Let T , w1, w2, . . . , wk and v1, v2, . . . , vr be as in Problem 2.

(a) Show that the set {T (v1), T (v2), . . . , T (vr)} is a basis for IT , the image of
T .

Solution: Let v ∈ Rn. Then, since {w1, w2, . . . , wk, v1, v2, . . . , vr} is a
basis for Rn, by the result in Problem 2, there exist scalars c1, c2, . . . , ck
and d1, d2, . . . , dr, such that

v = c1w1 + c2w2 + · · · ckwk + d1v1 + d2v2 + · · ·+ drvr. (4)

Next, apply T on both sides of (4) and use the linearity of T to get

T (v) = c1T (w1)+c2T (w2)+· · · ckT (wk)+d1T (v1)+d2T (v2)+· · ·+drT (vr),
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so that
T (v) = d1T (v1) + d2T (v2) + · · ·+ drT (vr), (5)

since w1, w2, . . . , wk ∈ NT .

Now, it follows from (5) that

T (v) ∈ span({T (v1), T (v2), . . . , T (vr)}), for all v ∈ Rn;

consequently,
IT ⊆ span({T (v1), T (v2), . . . , T (vr)}). (6)

On the other hand, since IT is a subspace of Rm, it follows that

span({T (v1), T (v2), . . . , T (vr)}) ⊆ IT . (7)

Combining (6) and (7) yields

IT = span({T (v1), T (v2), . . . , T (vr)}),

which shows that {T (v1), T (v2), . . . , T (vr)} spans IT .
Next, we show that {T (v1), T (v2), . . . , T (vr)} is linearly independent.

Consider the equation

c1T (v1) + c2T (v2) + · · ·+ crT (vr) = 0, (8)

which, using the linearity of T , can be written as

T (c1v1 + c2v2 + · · ·+ crvr) = 0 (9)

It follows from (9) that c1v1 + c2v2 + · · ·+ crvr ∈ NT ; so that, there exist
scalars d1, d2, . . . , dk such that

c1v1 + c2v2 + · · ·+ crvr = d1w1 + d2w2 + · · ·+ dkwk,

which can be rewritten as

−d1w1 − d2w2 − · · · − dkwk + c1v1 + c2v2 + · · ·+ crvr = 0. (10)

It follows from (10) and the fact that {w1, w2, . . . , wk, v1, v2, . . . , vr} is a
basis for Rn that

c1 = c2 = · · · = ck = 0,

which shows that (8) has only the trivial solution. Hence, the set {T (v1), T (v2), . . . , T (vr)}
is linearly independent.

We have therefore shown that {T (v1), T (v2), . . . , T (vr)} is a basis for IT .
�
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(b) Prove the Dimension Theorem.

Solution: It follows from the result in part (a) that dim(IT ) = r. Using
the result in part (b) of Problem 2 that

r = n− k,

where k = dim(NT ). We then have that

dim(IT ) = n− dim(NT ),

from which we get that

dim(NT ) + dim(IT ) = n,

which is the Dimension Theorem (1). �

4. Let T : Rn → Rm be a linear transformation.

(a) Prove that T is one–to–one if and only if dim(IT ) = n.

Solution: It follows from the result of Problem 1 in Assignment #19
that T is one–to–one if and only if NT = {0}; so that, dim(NT ) = 0.
Consequently, it follows from the Dimension Theorem in (1) that T is
one–to–one if and only if dim(IT ) = n. �

(b) Prove that T is onto if and only if dim(IT ) = m.

Solution: It follows from the result of Problem 3 in Assignment #19 that
T is onto if and only if span({T (e1), T (e2), . . . , T (en)}) = Rm. Thus, since

span({T (e1), T (e2), . . . , T (en)}) = IT ,

dim(IT ) = m. �

5. Let T : R3 → R3 be given by

T (v) = Av, for all v ∈ R3,

where A is the 3× 3 matrix given by

A =

 0 1 1
−1 0 1
−1 −1 0

 .

Determine whether or not T is
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(a) one–to–one;

(b) onto;

(c) invertible.

Solution: First, we compute the null space of T by solving the equation 0 1 1
−1 0 1
−1 −1 0

x1

x2

x3

 =

0
0
0

 ;

this is equivalent to solving the homogeneous system of equations
x2 + x3 = 0

−x1 + x3 = 0
−x1 − x2 = 0

(11)

The system in (11) can be solved by reducing the augmented matrix 0 1 1 | 0
−1 0 1 | 0
−1 −1 0 | 0

 ,

to 1 0 0 | 0
0 1 0 | 0
0 0 1 | 0

 ,

which shows that the system in (11) has only the trivial solution. Hence,

NT = {0},

and therefore

(a) T is one–to–one.

(b) Next, use the Dimension Theorem in (1) to get that dim(IT ) = 3, which
shows that IT = R3, and therefore T is onto.

(c) Finally, since T is one–to–one and onto, we get that T is invertible.

�


