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Solutions to Review Problems for Exam #2

1. The Poisson Random Process Revisited. We saw in class and in the
lecture notes online how to define a Poisson random process, {M(t) | t > 0},
to model occurrences of events at random points in time (e.g., occurrences of
mutations in a bacterial colony). Here M(t) counts the number of occurrences
in the time interval [0, t]. This continuous–time random process may also be
defined as one satisfying the following axioms:

(i) M(0) = 0.

(ii) The number of events that occur in disjoint time intervals are independent;
in symbols, for t1 < t2 6 t3 < t4,

M(t2)−M(t1) and M(t4)−M(t3) are independent random variables.

(iii) The number of occurrences within a time interval depends only on the
length of the time interval; in symbols, for all t, s > 0, M(t + s) −M(t)
depends only on s, so that

Pr[M(t+ s)−M(t) = k] = Pr[M(s)−M(0) = k], for all k.

(iv) Pr[M(∆t) = 1] = λ∆t+ o(∆t).

(v) Pr[M(∆t) > 2] = o(∆t).

The notation o(h) in (iv) and (v) is defined as follows: We say that an expression,

f(h), is o(h) as h→ 0 iff lim
h→0

f(h)

h
= 0.

The constant λ in (iv) is called the rate of the process.

Set
Pm(t) = Pr[M(t) = m], for m = 0, 1, 2, 3 . . . , and t > 0. (1)

Use the axioms (i)–(v) to prove the following assertions.

(a) For t, s > 0,
P0(t+ s) = P0(t) · P0(s). (2)

Suggestion: Consider the event [M(t) = 0,M(t+ s)−M(t) = 0] or

[M(t) = 0] ∩ [M(t+ s)−M(t) = 0].
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Solution: It follows from axiom (ii) that the random variables

M(t)−M(0) and M(t+ s)−M(t)

are independent; consequently, the events

(M(t) = 0) and (M(t+ s)−M(t) = 0)

are independent (here we have also used axiom (i)); thus,

Pr(M(t) = 0,M(t+s)−M(t) = 0) = Pr(M(t) = 0)·Pr(M(t+s)−M(t) = 0),

or

Pr(M(t+ s) = 0) = Pr(M(t) = 0) · Pr(M(t+ s)−M(t) = 0).

Hence, using the definition of Po in (1),

Po(t+ s) = Po(t) · Pr(M(t+ s)−M(t) = 0).

Thus, using axiom (iii),

Po(t+ s) = Po(t) · Pr(M(s)−M(0) = 0),

or, in view of axiom (i),

Po(t+ s) = Po(t) · Pr(M(s) = 0),

from which (2) follows by virtue of the definition of Po in (1). �

(b) Use (2) and axioms (iv) and (v) to derive the differential equation

dP0

dt
= −λP0(t). (3)

Suggestion: Verify that

Po(t+ ∆t)− P0(t) = −λPo(t)∆t+ o(∆t). (4)

Solution: Substituting ∆t for s in (2), we get

Po(t+ ∆t) = Po(t) · Po(∆t), (5)

where

Po(∆t) = Pr(M(∆t) = 0)

= 1− Pr(M(∆t) > 1)

= 1− Pr(M(∆t) = 1)− Pr(M(∆t) > 2);
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so that, in view of (iv) and (v),

Po(∆t) = 1− λ∆t+ o(∆t). (6)

Consequently, substituting (6) into (5),

Po(t+ ∆t) = Po(t)(1− λ∆t+ o(∆t)),

from which we get

Po(t+ ∆t) = Po(t)− λPo(t)∆t+ o(∆t),

which yields (4).

Next, divide both sides of (4) by ∆t 6= 0 to get

Po(t+ ∆t)− Po(t)
∆t

= −λPo(t) +
o(∆t)

∆t
. (7)

It follows from (7) and the definition of “o” that Po is differentiable at
every t > 0, and its derivative is given by

dPo(t)

dt
= −λPo(t),

which is (3). �

(c) Solve the differential equation in (3) subject to the initial condition in (i)
to obtain and expression for P0(t) for all t > 0.

Solution: The general solution of the differential equation in (3) is

Po(t) = Ce−λt, for t > 0, (8)

for arbitrary constant C.

Observe that
Po(0) = Pr(M(0) = 0) = 1,

by virtue of axiom (i). It then follows from (8) that C = 1; consequently,

Po(t) = e−λt, for t > 0, (9)

�
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(d) Let T1 denote the time of the first occurrence, and, for n > 2, let Tn
denote the time elapsed between the (n− 1)st occurrence and the the nth

occurrence. The sequence (Tn) is called the sequence of interarrival times.
Give the distribution for each of the random variables Tn.

Suggestion: We have already done the derivation of the distribution for T1
in the class notes and assignments. Please, present the derivation here as
well.

For n = 2, consider the conditional probabilities

Pr[T2 > s+ t | T1 = s] and Pr[M(s+ t)−M(s) = 0 |M(s) = 1].

Solution: We first compute the cumulative distribution function of T1,

FT1(t) = Pr(T1 6 t), for t > 0;

= 1− Pr(T1 > t)

= 1− Pr(M(t) = 0),

since T1 > t implies that no event has occurred at time t. Consequently,
using (9)

FT1(t) = 1− e−λt, for t > 0.

Thus, the probability density function of T1 is given by

fT1(t) =

{
λe−λt, if t > 0;

0, if t 6 0.
(10)

Hence, T1 has an exponential distribution with parameter 1/λ.

Next, we find the distribution of T2. To do this, we first compute condi-
tional probability

Pr(T2 6 s+ t | T1 = s) = 1− Pr(T2 > s+ t | T1 = s), (11)

since the second occurrence will happen at some time t after the first
occurrence at T1 = s.

Observe that the event (T2 > s+ t | T1 = s) is the same as the event that
there are no new occurrances after the first occurrence at T1 = s in the
time interval (s, s+t); that is, the event (M(s+t)−M(s) = 0) conditioned
on the event M(s) = 1. We therefore have that

Pr(T2 > s+ t | T1 = s) = Pr(M(s+ t)−M(s) = 0 |M(s) = 1)
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or

Pr(T2 > s+ t | T1 = s) = Pr(M(s+ t)−M(s) = 0 |M(s)−M(0) = 1),

by virtue of axiom (i). Thus, by axiom (ii)

Pr(T2 > s+ t | T1 = s) = Pr(M(s+ t)−M(s) = 0),

and, by axiom (iii),

Pr(T2 > s+ t | T1 = s) = Pr(M(t)−M(0) = 0),

or
Pr(T2 > s+ t | T1 = s) = Pr(M(t) = 0), (12)

where we have used axiom (i) again.

Using the definition of Po in (1) we obtain from (13) that

Pr(T2 > s+ t | T1 = s) = Po(t);

so that, in view of (9),

Pr(T2 > s+ t | T1 = s) = e−λt, for t > 0. (13)

Combining (11) and (13)

Pr(T2 6 s+ t | T1 = s) = 1− e−λt, for t > 0,

which shows that T2 ∼ Exponential(1/λ); that is, T2 and T1 have the same
distribution.

A similar argument to that used for T2 shows that Tk ∼ Exponential(1/λ)
for k > 2. Consequently,

Tk ∼ Exponential(1/λ), for k = 1, 2, 3, . . .

�

(e) Let Sn denote the time of occurrence of the nth event, so that

Sn =
n∑
k=1

Tk, for n = 1, 2, 3, . . . (14)

Show that, for each n = 1, 2, 3, . . ., Sn is a continuous random variable
with density function given by

f
Sn

(s) = λe−λs
(λs)n−1

(n− 1)!
, for n = 1, 2, 3, . . . (15)
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Suggestion: Proceed by induction on n. The base case, n = 1, has already
been established. For the case n = 2, so that S2 = T1 + T2, use the fact
that, since T1 and T2 are independent random variables, the distribution
of S2 is given by the convolution formula

f
Sn

(s) = f
T1
∗ f

T2
(s) =

∫ ∞
−∞

f
T1

(τ)f
T2

(s− τ) dτ (16)

Note that the convolution formula in (16) applies to any sum of indepen-
dent, continuous random variables.

Solution: We first note that the random variables, Tk, obtained in the
previous part are mutually independent. This is a consequence of axiom
(ii), since the occurrence of an event after any number of events have
occurred is in independent of how many events have occurred previously.

First, note that S1 = T1, according to (14), and T1 has the distribution
function given in (10), which the distribution function given in (15) for the
case n = 1.

Next, we consider the case n = 2. In this case, using (14), S2 = T1 + T2,
were T1 and T2 are independent, Exponential(1/λ) random variables. We
can therefore use the formula in (16) to find the distribution of S2:

f
S2

(s) =

∫ ∞
−∞

f
T1

(τ)f
T2

(s− τ) dτ,

where the distribution functions of T1 and T2 are both given by (10); con-
sequently,

f
S2

(s) =

∫ s

0

λe−λτλe−λ(s−τ) dτ

= λ2e−λs
∫ s

0

dτ

= λ2e−λss,

which we can rewrite as

f
S2

(s) = λe−λs(λs), for s > 0,

which is (16) for the case n = 2.

We now proceed by induction on n, assuming the statement is true for n,
and showing that it must be true for n+ 1. We therefore consider

Sn+1 = Sn + Tn+1,
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where Sn and Tn+1 are independent random variables with distributions
given by (14), for s > 0, and (10), respectively. Thus, using the convolution
formula in (16), this time for Sn and Tn+1 in place of T1 and T2,

f
Sn+1

(s) =

∫ ∞
−∞

f
Sn

(τ)f
Tn+1

(s− τ) dτ

=

∫ s

0

λe−λτ
(λτ)n−1

(n− 1)!
λe−λ(s−τ) dτ

=
λn+1

(n− 1)!
e−λs

∫ s

0

τn−1 dτ

=
λn+1

(n− 1)!
e−λs

sn

n
,

which we can rewrite as

f
Sn+1

(s) = λe−λs
(λs)n

n!
, for s > 0,

which is (15) for n+ 1 in place of n. �

(f) Use the result in (15) to derive the formula

Pm(t) =
(λt)m

m!
e−λt, for m = 0, 1, 2, 3, . . . , and t > 0. (17)

Suggestion: Consider the events

[M(t) > n] and [Sn 6 t]

and note that
[M(t) = n] = [n 6M(t) < n+ 1]

Solution: We compute

Pr(M(t) = m) = Pr(m 6M(t) < m+ 1). (18)

Note that the Sn 6 t if and only if there have been at least n occurrences
at in the interval [0, t]; consequently

(M(t) > n) and (Sn 6 t) are the same events. (19)
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Similarly,

(M(t) > n+ 1) and (Sn+1 6 t) are the same events. (20)

Now, it follows from

(M(t) > m) = (m 6M(t) < m+ 1) ∪ (M(t) > m+ 1)

that

Pr(M(t) > m) = Pr(m 6M(t) < m+ 1) + Pr(M(t) > m+ 1),

from which we get that

Pr(m 6M(t) < m+ 1) = Pr(M(t) > m)− Pr(M(t) > m+ 1);

consequently, in view of (19) and (20)

Pr(m 6M(t) < m+ 1) = Pr(Sm 6 t)− Pr(Sm+1 6 t). (21)

Next, use the distribution function in (15) to compute

Pr(Sm 6 t) =

∫ t

0

λe−λs
(λs)m−1

(m− 1)!
ds,

which we can evaluate using integration by parts.

Set

u = λe−λs and dv =
(λs)m−1

(m− 1)!
;

so that,

du = −λ2e−λs ds and v =
1

λ

(λs)m

m!
.

Thus,

Pr(Sm 6 t) =
(λs)m

m!
e−λs

∣∣∣t
0

+

∫ t

0

λe−λs
(λs)m

m!
ds,

or

Pr(Sm 6 t) =
(λt)m

m!
e−λt + Pr(Sm+1 6 t), (22)

Comparing (21) and (22) we see that

Pr(m 6M(t) < m+ 1) =
(λt)m

m!
e−λt, (23)

for m = 0, 1, 2, 3, . . ., and t > 0.

The statement in (17) now follows from (18) and (23). �
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(g) Suppose that exactly one event has occurred in the time interval [0, τ ]. We
consider the time of occurrence, T1, of that event. Compute the conditional
probability

Pr[T1 6 t |M(τ) = 1], for 0 < t < τ.

Suggestion: Consider the events

[T1 6 t,M(τ) = 1] and [M(t) = 1,M(τ)−M(t) = 0],

for 0 < t < τ .

Solution: By the definition of conditional probability,

Pr(T1 6 t |M(τ) = 1) =
Pr(T1 6 t |M(τ) = 1)

Pr(M(τ) = 1)
, (24)

where, according to (17),

Pr(M(τ) = 1) = λτe−λτ . (25)

Note that, for 0 < t < τ ,

(T1 6 t,M(τ) = 1) and (M(t) = 1,M(τ)−M(t) = 0),

since the first occurrence in (0, t] and no occurrence in (tτ ] is the same as
exactly one occurrence in (0, τ ] and the time of the first occurrence and t
coming after the first occurrence. Consequently,

Pr(T1 6 t,M(τ) = 1) = Pr(M(t) = 1,M(τ)−M(t) = 0);

so that, using axioms (i), (ii) and (iii),

Pr(T1 6 t,M(τ) = 1) = Pr(M(t) = 1) · Pr(M(τ − t) = 0),

or
Pr(T1 6 t,M(τ) = 1) = λte−λt · e−λ(τ−t),

or
Pr(T1 6 t,M(τ) = 1) = λt · e−λτ . (26)

Combining (24), (25) and (26) we see that

Pr(T1 6 t |M(τ) = 1) =
t

τ
, for 0 < t < τ. (27)

�



Math 183. Rumbos Fall 2016 10

2. The Error function, Erf : R→ R, is defined by

Erf(x) =
2√
π

∫ x

0

e−s
2

ds, for x ∈ R. (28)

Use the fact that ∫ ∞
0

e−s
2

ds =

√
π

2
(29)

to deduce that

(a) lim
x→∞

Erf(x) = 1; and

(b) lim
x→−∞

Erf(x) = −1.

Solution:

(a) The expression in (29) is equivalent to

lim
x→∞

∫ x

0

e−s
2

ds =

√
π

2
,

or

lim
x→∞

2√
π

∫ x

0

e−s
2

ds = 1,

from which we get that
lim
x→∞

Erf(x) = 1, (30)

which was to be shown.

(b) Since the map s 7→ e−s
2

is even, it follows that, for any x < 0,∫ 0

x

e−s
2

ds =

∫ −x
0

e−s
2

ds,

so that

−
∫ x

0

e−s
2

ds =

∫ −x
0

e−s
2

ds,

which yields
Erf(x) = −Erf(−x), for all x < 0.

Thus,
lim

x→−∞
Erf(x) = − lim

x→−∞
Erf(−x) (31)
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Making the change of variables y = −x on the right–hand side of (31) we
see that

lim
x→−∞

Erf(x) = − lim
y→∞

Erf(y). (32)

Combining (30) and (32)

lim
x→−∞

Erf(x) = −1, (33)

which was to be shown.

�

3. Solving the Heat Equation. In this problem we compute a solution of the
initial value problem

∂u

∂t
= D

∂2u

∂x2
, x ∈ R, t > 0;

u(x, 0) = f(x), x ∈ R,
(34)

where

f(x) =

{
1, if x 6 0;

0, if x > 0.
(35)

(a) Use the heat kernel to give a solution of the IVP (34).

Solution: A candidate for a solution is given by

u(x, t) =

∫ ∞
−∞

p(x− y, t)f(y) dy, for x ∈ R and t > 0, (36)

where

p(x, t) =
e−x

2/4Dt

√
4πDt

, for x ∈ R and t > 0. (37)

Use (35) and (37) to obtain from (36) that

u(x, t) =

∫ 0

−∞

e−(x−y)
2/4Dt

√
4πDt

dy, for x ∈ R and t > 0. (38)

Make the change variables s =
x− y√

4Dt
in (38) to obtain

u(x, t) = − 1√
π

∫ x/
√
4Dt

∞
e−s

2

ds, for x ∈ R and t > 0,
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or

u(x, t) =
1√
π

∫ ∞
x/
√
4Dt

e−s
2

ds, for x ∈ R and t > 0,

or

u(x, t) =
1

2

(
2√
π

∫ ∞
0

e−s
2

ds− 2√
π

∫ x/
√
4Dt

0

e−s
2

ds

)
,

forx ∈ R and t > 0; so that, using (29) and the definition of the Error
function in (28),

u(x, t) =
1

2

[
1− Erf

(
x√
4Dt

)]
, for x ∈ R and t > 0. (39)

�

(b) Use a mathematical software package to sketch the graph of x 7→ u(x, t)
for several values of t > 0, where u(x, t) is the solution of the initial value
problem (34) with initial condition in (35) obtained in part (a).

Solution: Set 4D = 1 in (39) to get

u(x, t) =
1

2

[
1− Erf

(
x√
t

)]
, for x ∈ R and t > 0. (40)

Figure shows sketches of the graphs of y = u(x, t) for t = 0.1, 1, 10 �
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Computed by WolframÈAlpha

Figure 1: Sketch of Graph of y = u(x, t) for t = 0.1, 1, 10

(c) Let u(x, t) be the solution to the initial value problem (34) with initial
condition in (35) obtained in part (a). Compute the following
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(i) lim
t→0+

u(x, t), for x = 0 and for x 6= 0.

Solution: Let u(x, t) be as given in (39); then, for x = 0 we get

lim
t→0+

u(x, t) =
1

2
.

For x 6= 0, we consider two possibilities: x < 0 and x > 0.
If x < 0, we obtain

lim
t→0+

u(x, t) = lim
t→0+

1

2

[
1− Erf

(
x√
4Dt

)]
=

1

2
[1− (−1)] = 1.

If x > 0,

lim
t→0+

u(x, t) = lim
t→0+

1

2

[
1− Erf

(
x√
4Dt

)]
=

1

2
[1− 1] = 0.

�

(ii) lim
x→0

u(x, t), for all t > 0.

Solution: Compute

lim
x→0

u(x, t) = lim
x→0

1

2

[
1− Erf

(
x√
4Dt

)]
=

1

2
[1− 0] =

1

2
.

�

(d) Let u(x, t) be the solution of the initial value problem (34) with initial
condition in (35) obtained in part (a). Compute the following

(i) lim
t→∞

u(x, t), for x = 0 and for x 6= 0.

Solution: We consider two cases: (i) x = 0, and (ii) x 6= 0.

(i) If x = 0,

lim
t→∞

u(x, t) =
1

2
.

(ii) If x 6= 0,

lim
t→∞

u(x, t) = lim
t→∞

1

2

[
1− Erf

(
x√
4Dt

)]
=

1

2
[1− 0] =

1

2
.

Thus, in both cases lim
t→∞

u(x, t) =
1

2
. �



Math 183. Rumbos Fall 2016 14

(ii) lim
x→∞

u(x, t), for all t > 0.

Solution: Compute

lim
x→∞

u(x, t) = lim
x→∞

1

2

[
1− Erf

(
x√
4Dt

)]
=

1

2
[1− 1] = 0.

�

(iii) lim
x→−∞

u(x, t), for all t > 0.

Solution: Compute

lim
x→−∞

u(x, t) = lim
x→−∞

1

2

[
1− Erf

(
x√
4Dt

)]
=

1

2
[1− (−1)] = 1.

�


